Capacitance is a measure of the amount of electric charge stored (or separated) for a given electric potential. The most common form of charge storage device is a two-plate capacitor. If the charges on the plates are +Q and -Q, and V gives the voltage difference between the plates, then the capacitance is given by
The SI unit of capacitance is the farad; 1 farad = 1 coulomb per volt.
Contents
[hide]
• 1 Capacitors
• 2 Energy
• 3 Capacitance and 'displacement current'
• 4 Coefficients of Potential
• 5 Capacitance/inductance duality
• 6 Self-capacitance
• 7 Elastance
• 8 Stray capacitance
• 9 Footnotes
• 10 References
• 11 External links
• 12 See also
[edit] Capacitors
The capacitance of the majority of capacitors used in electronic circuits is several orders of magnitude smaller than the farad. The most common subunits of capacitance in use today are the millifarad (mF), microfarad (µF), the nanofarad (nF) and the picofarad (pF)
The capacitance can be calculated if the geometry of the conductors and the dielectric properties of the insulator between the conductors are known. For example, the capacitance of a parallel-plate capacitor constructed of two parallel plates of area A separated by a distance d is approximately equal to the following:
or
where
C is the capacitance in farads, F
ϵs is the static permittivity of the insulator used (or ϵ0 for a vacuum)
A is the area of each plate, measured in square metres
ϵr is the relative static permittivity (sometimes called the dielectric constant) of the material between the plates, (vacuum =1)
d is the separation between the plates, measured in metres
The equation is a good approximation if d is small compared to the other dimensions of the plates.
The dielectric constant for a number of very useful dielectrics changes as a function of the applied electrical field, e.g. ferroelectric materials, so the capacitance for these devices is no longer purely a function of device geometry. If a capacitor is driven with a sinusoidal voltage, the dielectric constant, or more accurately referred to as the relative static permittivity, is a function of frequency. A changing dielectric constant with frequency is referred to as a dielectric dispersion, and is governed by dielectric relaxation processes, such as Debye relaxation.
[edit] Energy
The energy (measured in joules) stored in a capacitor is equal to the work done to charge it. Consider a capacitance C, holding a charge +q on one plate and -q on the other. Moving a small element of charge dq from one plate to the other against the potential difference V = q/C requires the work dW:
where
W is the work measured in joules
q is the charge measured in coulombs
C is the capacitance, measured in farads
We can find the energy stored in a capacitance by integrating this equation. Starting with an uncharged capacitance (q=0) and moving charge from one plate to the other until the plates have charge +Q and -Q requires the work W:
Combining this with the above equation for the capacitance of a flat-plate capacitor, we get:
.
where
W is the energy measured in joules
C is the capacitance, measured in farads
V is the voltage measured in volts
[edit] Capacitance and 'displacement current'
The physicist James Clerk Maxwell invented the concept of displacement current, , to make Ampère's law consistent with conservation of charge in cases where charge is accumulating, for example in a capacitor. He interpreted this as a real motion of charges, even in vacuum, where he supposed that it corresponded to motion of dipole charges in the ether. Although this interpretation has been abandoned, Maxwell's correction to Ampère's law remains valid (a changing electric field produces a magnetic field).
Maxwell's equation combining Ampère's law with the displacement current concept is given as . (Integrating both sides, the integral of can be replaced — courtesy of Stokes's theorem — with the integral of over a closed contour, thus demonstrating the interconnection with Ampère's formulation.)
[edit] Coefficients of Potential
The discussion above is limited to the case of two conducting plates, although of arbitrary size and shape. The definition C=Q/V still holds if only one plate is given a charge, provided that we recognize that the field lines produced by that charge terminate as if the plate were at the center of an oppositely charged sphere at infinity.
C=Q/V does not apply when there are more than two charged plates, or when the net charge on the two plates is non-zero. To handle this case, Maxwell introduced his "coefficients of potential". If three plates are given charges Q1,Q2,Q3, then the voltage of plate 1 is given by
V1 = p11Q1 + p12Q2 + p13Q3 ,
and similarly for the other voltages. Maxwell showed that the coefficients of potential are symmetric, so that p12 = p21, etc.
[edit] Capacitance/inductance duality
In mathematical terms, the ideal capacitance can be considered as an inverse of the ideal inductance, because the voltage-current equations of the two phenomena can be transformed into one another by exchanging the voltage and current terms.
[edit] Self-capacitance
In electrical circuits, the term capacitance is usually a shorthand for the mutual capacitance between two adjacent conductors, such as the two plates of a capacitor. There also exists a property called self-capacitance, which is the amount of electrical charge that must be added to an isolated conductor to raise its electrical potential by one volt. The reference point for this potential is a theoretical hollow conducting sphere, of infinite radius, centred on the conductor. Using this method, the self-capacitance of a conducting sphere of radius R is given by:
[1]
Typical values of self-capacitance are:
• for the top "plate" of a van de Graaf generator, typically a sphere 20 cm in radius: 20 pF
• the planet Earth: about 710 µF
[edit] Elastance
The inverse of capacitance is called elastance, and its unit is the reciprocal farad, also informally called the daraf.
[edit] Stray capacitance
Any two adjacent conductors can be considered as a capacitor, although the capacitance will be small unless the conductors are close together or long. This (unwanted) effect is termed "stray capacitance". Stray capacitance can allow signals to leak between otherwise isolated circuits (an effect called crosstalk), and it can be a limiting factor for proper functioning of circuits at high frequency.
Stray capacitance is often encountered in amplifier circuits in the form of "feedthrough" capacitance that interconnects the input and output nodes (both defined relative to a common ground). It is often convenient for analytical purposes to replace this capacitance with a combination of one input-to-ground capacitance and one output-to-ground capacitance. (The original configuration — including the input-to-output capacitance — is often referred to as a pi-configuration.) Miller's theorem can be used to effect this replacement. Miller's theorem states that, if the gain ratio of two nodes is 1:K, then an impedance of Z connecting the two nodes can be replaced with a Z/(1-k) impedance between the first node and ground and a KZ/(K-1) impedance between the second node and ground. (Since impedance varies inversely with capacitance, the internode capacitance, C, will be seen to have been replaced by a capacitance of KC from input to ground and a capacitance of (K-1)C/K from output to ground.) When the input-to-output gain is very large, the equivalent input-to-ground impedance is very small while the output-to-ground impedance is essentially equal to the original (input-to-output) impedance.
A capacitor is an electrical/electronic device that can store energy in the electric field between a pair of conductors (called "plates"). The process of storing energy in the capacitor is known as "charging", and involves electric charges of equal magnitude, but opposite polarity, building up on each plate.
Capacitors are often used in electrical circuit and electronic circuits as energy-storage devices. They can also be used to differentiate between high-frequency and low-frequency signals. This property makes them useful in electronic filters.
Capacitors are occasionally referred to as condensers. This is considered an antiquated term in English, but most other languages use an equivalent, like the German word "Kondensator".
Contents
[hide]
• 1 History
• 2 Physics
o 2.1 Capacitance
o 2.2 Stored energy
o 2.3 Hydraulic model
• 3 Electrical circuits
o 3.1 DC sources
o 3.2 AC sources
3.2.1 Impedance
3.2.2 Laplace equivalent (s-domain)
o 3.3 Displacement current
o 3.4 Networks
3.4.1 Series or parallel arrangements
o 3.5 Capacitor/inductor duality
• 4 Capacitor types
• 5 Applications
o 5.1 Energy storage
o 5.2 Power conditioning
5.2.1 Power factor correction
o 5.3 Filtering
5.3.1 Signal de-coupling
5.3.2 Noise filters, motor starters, and snubbers
o 5.4 Signal processing
5.4.1 Tuned circuits
o 5.5 Other applications
5.5.1 Sensing
5.5.2 Pulsed power and weapons
• 6 Hazards and safety
o 6.1 High-voltage
• 7 See also
• 8 Notes
• 9 References
• 10 External links
[edit] History
Various types of capacitors. From left: multilayer ceramic, ceramic disc, multilayer polyester film, tubular ceramic, polystyrene, metallized polyester film, aluminium electrolytic. Major scale divisions are cm.
Various Capacitors. The large cylinders are high value electrolytic types
In October 1745, Ewald Georg von Kleist of Pomerania invented the first recorded capacitor: a glass jar coated inside and out with metal. The inner coating was connected to a rod that passed through the lid and ended in a metal sphere. By having this thin layer of glass insulation (a dielectric) between two large, closely spaced plates, von Kleist found the energy density could be increased dramatically compared with the situation with no insulator.
In January 1746, before Kleist's discovery became widely known, a Dutch physicist Pieter van Musschenbroek independently invented a very similar capacitor. It was named the Leyden jar, after the University of Leyden where van Musschenbroek worked. Daniel Gralath was the first to combine several jars in parallel into a "battery" to increase the total possible stored charge.
The earliest unit of capacitance was the 'jar', equivalent to about 1 nF.
Early capacitors were also known as condensers, a term that is still occasionally used today. It was coined by Alessandro Volta in 1782 (derived from the Italian condensatore), with reference to the device's ability to store a higher density of electric charge than a normal isolated conductor. Most non-English languages still use a word derived from "condensatore", as the 'in other languages' links from this article testify.
Condensers patented by Nikola Tesla in U.S. Patent 567,818, Electrical Condenser, in 1896 on September 15.
[edit] Physics
Diagrammatic
A capacitor consists of two conductive electrodes, or plates, separated by a dielectric.
[edit] Capacitance
The capacitor's capacitance (C) is a measure of the amount of charge (Q) stored on each plate for a given potential difference or voltage (V) which appears between the plates:
In SI units, a capacitor has a capacitance of one farad when one coulomb of charge is stored due to one volt applied potential difference across the plates. Since the farad is a very large unit, values of capacitors are usually expressed in microfarads (µF), nanofarads (nF), or picofarads (pF).
When there is a difference in electric charge between the plates, an electric field is created in the region between the plates that is proportional to the amount of charge that has been moved from one plate to the other. This electric field creates a potential difference V = E•d between the plates of this simple parallel-plate capacitor.
The capacitance is proportional to the surface area of the conducting plate and inversely proportional to the distance between the plates. It is also proportional to the permittivity of the dielectric (that is, non-conducting) substance that separates the plates.
The capacitance of a parallel-plate capacitor is given by:
[1]
where ε is the permittivity of the dielectric (see Dielectric constant), A is the area of the plates and d is the spacing between them.
In the diagram, the rotated molecules create an opposing electric field that partially cancels the field created by the plates, a process called dielectric polarization.
[edit] Stored energy
As opposite charges accumulate on the plates of a capacitor due to the separation of charge, a voltage develops across the capacitor due to the electric field of these charges. Ever-increasing work must be done against this ever-increasing electric field as more charge is separated. The energy (measured in joules, in SI) stored in a capacitor is equal to the amount of work required to establish the voltage across the capacitor, and therefore the electric field. The energy stored is given by:
where V is the voltage across the capacitor.
The maximum energy that can be (safely) stored in a particular capacitor is limited by the maximum electric field that the dielectric can withstand before it breaks down. Therefore, all capacitors made with the same dielectric have about the same maximum energy density (joules of energy per cubic meter).
[edit] Hydraulic model
Main article: Hydraulic analogy
As electrical circuitry can be modeled by fluid flow, a capacitor can be modeled as a chamber with a flexible diaphragm separating the input from the output. As can be determined intuitively as well as mathematically, this provides the correct characteristics:
• The pressure difference (voltage difference) across the unit is proportional to the integral of the flow (current)
• A steady state current cannot pass through it because the pressure will build up across the diaphragm until it equally opposes the source pressure.
• But a transient pulse or alternating current can be transmitted
• The capacitance of units connected in parallel is equivalent to the sum of their individual capacitances
[edit] Electrical circuits
The electrons within dielectric molecules are influenced by the electric field, causing the molecules to rotate slightly from their equilibrium positions. The air gap is shown for clarity; in a real capacitor, the dielectric is in direct contact with the plates. Capacitors also allow AC current to flow and block DC current.
[edit] DC sources
The dielectric between the plates is an insulator and blocks the flow of electrons. A steady current through a capacitor deposits electrons on one plate and removes the same quantity of electrons from the other plate. This process is commonly called 'charging' the capacitor. The current through the capacitor results in the separation of electric charge within the capacitor, which develops an electric field between the plates of the capacitor, equivalently, developing a voltage difference between the plates. This voltage V is directly proportional to the amount of charge separated Q. Since the current I through the capacitor is the rate at which charge Q is forced through the capacitor (dQ/dt), this can be expressed mathematically as:
where
I is the current flowing in the conventional direction, measured in amperes,
dV/dt is the time derivative of voltage, measured in volts per second, and
C is the capacitance in farads.
For circuits with a constant (DC) voltage source and consisting of only resistors and capacitors, the voltage across the capacitor cannot exceed the voltage of the source. Thus, an equilibrium is reached where the voltage across the capacitor is constant and the current through the capacitor is zero. For this reason, it is commonly said that capacitors block DC.
[edit] AC sources
The current through a capacitor due to an AC source reverses direction periodically. That is, the alternating current alternately charges the plates: first in one direction and then the other. With the exception of the instant that the current changes direction, the capacitor current is non-zero at all times during a cycle. For this reason, it is commonly said that capacitors "pass" AC. However, at no time do electrons actually cross between the plates, unless the dielectric breaks down. Such a situation would involve physical damage to the capacitor and likely to the circuit involved as well.
Since the voltage across a capacitor is proportional to the integral of the current, as shown above, with sine waves in AC or signal circuits this results in a phase difference of 90 degrees, the current leading the voltage phase angle. It can be shown that the AC voltage across the capacitor is in quadrature with the alternating current through the capacitor. That is, the voltage and current are 'out-of-phase' by a quarter cycle. The amplitude of the voltage depends on the amplitude of the current divided by the product of the frequency of the current with the capacitance, C.
[edit] Impedance
The ratio of the phasor voltage across a circuit element to the phasor current through that element is called the impedance Z. For a capacitor, the impedance is given by
where
is the capacitive reactance,
is the angular frequency,
f is the frequency),
C is the capacitance in farads, and
j is the imaginary unit.
While this relation (between the frequency domain voltage and current associated with a capacitor) is always true, the ratio of the time domain voltage and current amplitudes is equal to XC only for sinusoidal (AC) circuits in steady state.
See derivation Deriving capacitor impedance.
Hence, capacitive reactance is the negative imaginary component of impedance. The negative sign indicates that the current leads the voltage by 90° for a sinusoidal signal, as opposed to the inductor, where the current lags the voltage by 90°.
The impedance is analogous to the resistance of a resistor. The impedance of a capacitor is inversely proportional to the frequency -- that is, for very high-frequency alternating currents the reactance approaches zero -- so that a capacitor is nearly a short circuit to a very high frequency AC source. Conversely, for very low frequency alternating currents, the reactance increases without bound so that a capacitor is nearly an open circuit to a very low frequency AC source. This frequency dependent behaviour accounts for most uses of the capacitor (see "Applications", below).
Reactance is so called because the capacitor doesn't dissipate power, but merely stores energy. In electrical circuits, as in mechanics, there are two types of load, resistive and reactive. Resistive loads (analogous to an object sliding on a rough surface) dissipate the energy delivered by the circuit as heat, while reactive loads (analogous to a spring or frictionless moving object) store this energy, ultimately delivering the energy back to the circuit.
Also significant is that the impedance is inversely proportional to the capacitance, unlike resistors and inductors for which impedances are linearly proportional to resistance and inductance respectively. This is why the series and shunt impedance formulae (given below) are the inverse of the resistive case. In series, impedances sum. In parallel, conductances sum.
[edit] Laplace equivalent (s-domain)
When using the Laplace transform in circuit analysis, the capacitive impedance is represented in the s domain by:
where C is the capacitance, and s (= σ+jω) is the complex frequency.
[edit] Displacement current
The physicist James Clerk Maxwell invented the concept of displacement current, dD/dt, to make Ampère's law consistent with conservation of charge in cases where charge is accumulating as in a capacitor. He interpreted this as a real motion of charges, even in vacuum, where he supposed that it corresponded to motion of dipole charges in the aether. Although this interpretation has been abandoned, Maxwell's correction to Ampère's law remains valid.
[edit] Networks
[edit] Series or parallel arrangements
Main article: Series and parallel circuits
Capacitors in a parallel configuration each have the same potential difference (voltage). Their total capacitance (Ceq) is given by:
The reason for putting capacitors in parallel is to increase the total amount of charge stored. In other words, increasing the capacitance also increases the amount of energy that can be stored. Its expression is:
The current through capacitors in series stays the same, but the voltage across each capacitor can be different. The sum of the potential differences (voltage) is equal to the total voltage. Their total capacitance is given by:
In parallel the effective area of the combined capacitor has increased, increasing the overall capacitance. While in series, the distance between the plates has effectively been increased, reducing the overall capacitance.
In practice capacitors will be placed in series as a means of economically obtaining very high voltage capacitors, for example for smoothing ripples in a high voltage power supply. Three "600 volt maximum" capacitors in series, will increase their overall working voltage to 1800 volts. This is of course offset by the capacitance obtained being only one third of the value of the capacitors used. This can be countered by connecting 3 of these series set-ups in parallel, resulting in a 3x3 matrix of capacitors with the same overall capacitance as an individual capacitor but operable under three times the voltage. In this application, a large resistor would be connected across each capacitor to ensure that the total voltage is divided equally across each capacitor and also to discharge the capacitors for safety when the equipment is not in use.
Another application is for use of polarized capacitors in alternating current circuits; the capacitors are connected in series, in reverse polarity, so that at any given time one of the capacitors is not conducting...
[edit] Capacitor/inductor duality
In mathematical terms, the ideal capacitor can be considered as an inverse of the ideal inductor, because the voltage-current equations of the two devices can be transformed into one another by exchanging the voltage and current terms. Just as two or more inductors can be magnetically coupled to make a transformer, two or more charged conductors can be electrostatically coupled to make a capacitor. The mutual capacitance of two conductors is defined as the current that flows in one when the voltage across the other changes by unit voltage in unit time.
[edit] Capacitor types
Listed by di-electric material.
• Vacuum : Two metal, usually copper, electrodes are separated by a vacuum. The insulating envelope is usually glass or ceramic. Typically of low capacitance - 10 - 1000 pF and high voltage, up to tens of kilovolts, they are most often used in radio transmitters and other high voltage power devices. Both fixed and variable types are available. Vacuum variable capacitors can have a minimum to maximum capacitance ratio of up to 100 pF, allowing any tuned circuit to cover a full decade of frequency. Vacuum is the most perfect of dielectrics with a zero loss tangent. This allows very high powers to be transmitted without significant loss and consequent heating.
• Air : Air dielectric capacitors consist of metal plates separated by an air gap. The metal plates, of which there may be many interleaved, are most often made of aluminium or silver-plated brass. Nearly all air dielectric capacitors are variable and are used in radio tuning circuits.
• Metallized plastic film: Made from high quality polymer film (usually polycarbonate, polystyrene, polypropylene, polyester (Mylar), and for high quality capacitors polysulfone), and metal foil or a layer of metal deposited on surface. They have good quality and stability, and are suitable for timer circuits. Suitable for high frequencies.
• Mica: Similar to metal film. Often high voltage. Suitable for high frequencies. Expensive. Excellent tolerance.
• Paper: Used for relatively high voltages. Now obsolete.
• Glass: Used for high voltages. Expensive. Stable temperature coefficient in a wide range of temperatures.
• Ceramic: Chips of alternating layers of metal and ceramic. Depending on their dielectric, whether Class 1 or Class 2, their degree of temperature/capacity dependence varies. They often have (especially the class 2) high dissipation factor, high frequency coefficient of dissipation, their capacity depends on applied voltage, and their capacity changes with aging. However they find massive use in common low-precision coupling and filtering applications. Suitable for high frequencies.
• Aluminum electrolytic: Polarized. Constructionally similar to metal film, but the electrodes are made of etched aluminium to acquire much larger surfaces. The dielectric is soaked with liquid electrolyte. They can achieve high capacities but suffer from poor tolerances, high instability, gradual loss of capacity especially when subjected to heat, and high leakage. Tend to lose capacity in low temperatures. Bad frequency characteristics make them unsuited for high-frequency applications. Special types with low equivalent series resistance are available.
• Tantalum electrolytic: Similar to the aluminum electrolytic capacitor but with better frequency and temperature characteristics. High dielectric absorption. High leakage. Has much better performance at low temperatures.
• OS-CON (or OS-CON) capacitors are a polymerized organic semiconductor solid-electrolyte type that offer longer life at higher cost than standard electrolytics.
• Supercapacitors: Made from carbon aerogel, carbon nanotubes, or highly porous electrode materials. Extremely high capacity. Can be used in some applications instead of rechargeable batteries.
• Gimmick capacitors are capacitors made from two insulated wires that have been twisted together. Each wire forms a capacitor plate. Gimmick capacitors are also a form of variable capacitor. Small changes in capacitance (20 percent or less) are obtained by twisting and untwisting the two wires.
• varicap capacitors are specialized, reverse-biased diodes whose capacitance varies with voltage. Used in phase-locked loops, amongst other applications.
• varactor is actually a specialized reverse-biased diode used as a variable capacitor according to the voltage level applied.
[edit] Applications
Capacitor symbols
Capacitor Polarized
capacitors Variable
capacitor
Capacitors have various uses in electronic and electrical systems.
[edit] Energy storage
A capacitor can store electric energy when disconnected from its charging circuit, so it can be used like a temporary battery. Capacitors are commonly used in electronic devices to maintain power supply while batteries are being changed. (This prevents loss of information in volatile memory.)
[edit] Power conditioning
Capacitors are used in power supplies where they smooth the output of a full or half wave rectifier. They can also be used in charge pump circuits as the energy storage element in the generation of higher voltages than the input voltage.
Capacitors are connected in parallel with the power circuits of most electronic devices and larger systems (such as factories) to shunt away and conceal current fluctuations from the primary power source to provide a "clean" power supply for signal or control circuits. Audio equipment, for example, uses several capacitors in this way, to shunt away power line hum before it gets into the signal circuitry. The capacitors act as a local reserve for the DC power source, and bypass AC currents from the power supply. This is used in car audio applications, when a stiffening capacitor compensates for the inductance and resistance of the leads to the lead-acid car battery.
[edit] Power factor correction
Capacitors are used in power factor correction. Such capacitors often come as three capacitors connected as a three phase load. Usually, the values of these capacitors are given not in farads but rather as a reactive power in volt-amperes reactive (VAr). The purpose is to counteract inductive loading from electric motors and fluorescent lighting in order to make the load appear to be mostly resistive.
[edit] Filtering
[edit] Signal de-coupling
Because capacitors pass AC but block DC signals (when charged up to the applied dc voltage), they are often used to separate the AC and DC components of a signal. This method is known as AC de-coupling. Here, a large value of capacitance, whose value need not be accurately controlled, but whose reactance is small at the signal frequency, is employed.
[edit] Noise filters, motor starters, and snubbers
When an inductive circuit is opened, the current through the inductance collapses quickly, creating a large voltage across the open circuit of the switch or relay. If the inductance is large enough, the energy will generate a spark, causing the contact points to oxidize, deteriorate, or sometimes weld together, or destroying a solid-state switch. A snubber capacitor across the newly opened circuit creates a path for this impulse to bypass the contact points, thereby preserving their life; these were commonly found in contact breaker ignition systems, for instance. Similarly, in smaller scale circuits, the spark may not be enough to damage the switch but will still radiate undesirable radio frequency interference (RFI), which a filter capacitor absorbs. Snubber capacitors are usually employed with a low-value resistor in series, to dissipate energy and minimize RFI. Such resistor-capacitor combinations are available in a single package.
In an inverse fashion, to initiate current quickly through an inductive circuit requires a greater voltage than required to maintain it; in uses such as large motors, this can cause undesirable startup characteristics, and a motor starting capacitor is used to increase the coil current to help start the motor.
Capacitors are also used in parallel to interrupt units of a high-voltage circuit breaker in order to equally distribute the voltage between these units. In this case they are called grading capacitors.
In schematic diagrams, a capacitor used primarily for DC charge storage is often drawn vertically in circuit diagrams with the lower, more negative, plate drawn as an arc. The straight plate indicates the positive terminal of the device, if it is polarized (see electrolytic capacitor).
[edit] Signal processing
The energy stored in a capacitor can be used to represent information, either in binary form, as in DRAMs, or in analogue form, as in analog sampled filters and CCDs. Capacitors can be used in analog circuits as components of integrators or more complex filters and in negative feedback loop stabilization. Signal processing circuits also use capacitors to integrate a current signal.
[edit] Tuned circuits
Capacitors and inductors are applied together in tuned circuits to select information in particular frequency bands. For example, radio receivers rely on variable capacitors to tune the station frequency. Speakers use passive analog crossovers, and analog equalizers use capacitors to select different audio bands.
In a tuned circuit such as a radio receiver, the frequency selected is a function of the inductance (L) and the capacitance (C) in series, and is given by:
This is the frequency at which resonance occurs in an LC circuit.
[edit] Other applications
[edit] Sensing
Most capacitors are designed to maintain a fixed physical structure. However, various things can change the structure of the capacitor — the resulting change in capacitance can be used to sense those things.
Changing the dielectric: the effects of varying the physical and/or electrical characteristics of the dielectric can also be of use. Capacitors with an exposed and porous dielectric can be used to measure humidity in air.
Changing the distance between the plates: Capacitors are used to accurately measure the fuel level in airplanes. Capacitors with a flexible plate can be used to measure strain or pressure. Capacitors are used as the sensor in condenser microphones, where one plate is moved by air pressure, relative to the fixed position of the other plate. Some accelerometers use MEMS capacitors etched on a chip to measure the magnitude and direction of the acceleration vector. They are used to detect changes in acceleration, eg. as tilt sensors or to detect free fall, as sensors triggering airbag deployment, and in many other applications. Also some fingerprint sensors. Additionally, a user can adjust the pitch of a theremin musical instrument by moving his hand since this changes the effective capacitance between the users hand and the antenna.
Changing the effective area of the plates: capacitive touch switches [1] [2] [3].
[edit] Pulsed power and weapons
Groups of large, specially constructed, low-inductance high-voltage capacitors (capacitor banks) are used to supply huge pulses of current for many pulsed power applications. These include electromagnetic forming, Marx generators, pulsed lasers (especially TEA lasers), pulse forming networks, radar, fusion research, and particle accelerators.
Large capacitor banks(Reservoir) are used as energy sources for the exploding-bridgewire detonators or slapper detonators in nuclear weapons and other specialty weapons. Experimental work is under way using banks of capacitors as power sources for electromagnetic armour and electromagnetic railguns or coilguns.
See also Explosively pumped flux compression generator.
[edit] Hazards and safety
Capacitors may retain a charge long after power is removed from a circuit; this charge can cause shocks (sometimes fatal) or damage to connected equipment. For example, even a seemingly innocuous device such as a disposable camera flash unit powered by a 1.5 volt AA battery contains a capacitor which may be charged to over 300 volts. This is easily capable of delivering an extremely painful, and possibly lethal shock.
Care must be taken to ensure that any large or high-voltage capacitor is properly discharged before servicing the containing equipment. For board-level capacitors, this is done by placing a bleeder resistor across the terminals, whose resistance is large enough that the leakage current will not affect the circuit, but small enough to discharge the capacitor shortly after power is removed. High-voltage capacitors should be stored with the terminals shorted, since temporarily discharged capacitors can develop potentially dangerous voltages when the terminals are left open-circuited.
Large oil-filled old capacitors must be disposed of properly as some contain polychlorinated biphenyls (PCBs). It is known that waste PCBs can leak into groundwater under landfills. If consumed by drinking contaminated water, PCBs are carcinogenic, even in very tiny amounts. If the capacitor is physically large it is more likely to be dangerous and may require precautions in addition to those described above. New electrical components are no longer produced with PCBs. ("PCB" in electronics usually means printed circuit board, but the above usage is an exception.) Capacitors containing PCB were labelled as containing "Askarel" and several other trade names.
[edit] High-voltage
Above and beyond usual hazards associated with working with high voltage, high energy circuits, there are a number of dangers that are specific to high voltage capacitors. High voltage capacitors may catastrophically fail when subjected to voltages or currents beyond their rating, or as they reach their normal end of life. Dielectric or metal interconnection failures may create arcing within oil-filled units that vaporizes dielectric fluid, resulting in case bulging, rupture, or even an explosion that disperses flammable oil, starts fires, and damages nearby equipment. Rigid cased cylindrical glass or plastic cases are more prone to explosive rupture than rectangular cases due to an inability to easily expand under pressure. Capacitors used in RF or sustained high current applications can overheat, especially in the center of the capacitor rolls. The trapped heat may cause rapid interior heating and destruction, even though the outer case remains relatively cool. Capacitors used within high energy capacitor banks can violently explode when a fault in one capacitor causes sudden dumping of energy stored in the rest of the bank into the failing unit. And, high voltage vacuum capacitors can generate soft X-rays even during normal operation. Proper containment, fusing, and preventative maintenance can help to minimize these hazards.
High voltage capacitors can benefit from a pre-charge to limit in-rush currents at power-up of HVDC circuits. This will extend the life of the component and may mitigate high voltage hazards.
A circuit breaker is an automatically-operated electrical switch designed to protect an electrical circuit from damage caused by overload or short circuit. Unlike a fuse, which operates once and then has to be replaced, a circuit breaker can be reset (either manually or automatically) to resume normal operation. Circuit breakers are made in varying sizes, from small devices that protect an individual household appliance up to large switchgear designed to protect high voltage circuits feeding an entire city.
Contents
[hide]
• 1 Operation
• 2 Domestic circuit breakers
• 3 Rated current
• 4 Common trip breakers
• 5 Types of circuit breaker
• 6 High-voltage circuit breakers
o 6.1 Interrupting principles for high-voltage circuit-breakers
o 6.2 Brief history
o 6.3 Thermal blast chambers
o 6.4 Self-blast chambers
o 6.5 Double motion of contacts
o 6.6 Comparison of single motion and double motion techniques
o 6.7 Thermal blast chamber with arc-assisted opening
o 6.8 Generator circuit-breakers
o 6.9 Evolution of tripping energy
o 6.10 Future perspectives
• 7 Other breakers
• 8 References
• 9 External links
[edit] Operation
Magnetic circuit breakers are implemented using a solenoid (electromagnet) whose pulling force increases with the current. The circuit breaker's contacts are held closed by a latch and, as the current in the solenoid increases beyond the rating of the circuit breaker, the solenoid's pull releases the latch which then allows the contacts to open by spring action. Some types of magnetic breakers incorporate a hydraulic time delay feature wherein the solenoid core is located in a tube containing a viscous fluid. The core is restrained by a spring until the current exceeds the breaker rating. During an overload, the solenoid pulls the core through the fluid to close the magnetic circuit, which then provides sufficient force to release the latch. The delay permits brief current surges beyond normal running current for motor starting, energizing equipment, etc. Short circuit currents provide sufficient solenoid force to release the latch regardless of core position thus bypassing the delay feature. Ambient temperature affects the time delay but does not affect the current rating of a magnetic breaker.
Thermal breakers use a bimetallic strip, which heats and bends with increased current, and is similarly arranged to release the latch. This type is commonly used with motor control circuits. Thermal breakers often have a compensation element to reduce the effect of ambient temperature on the device rating.
Thermomagnetic circuit breakers, which are the type found in most distribution boards, incorporate both techniques with the electromagnet responding instantaneously to large surges in current (short circuits) and the bimetallic strip responding to less extreme but longer-term overcurrent conditions.
Circuit breakers for larger currents are usually arranged with pilot devices to sense a fault current and to operate the trip opening mechanism.
Under short-circuit conditions, a current many times greater than normal can flow (see maximum prospective short circuit current). When electrical contacts open to interrupt a large current, there is a tendency for an arc to form between the opened contacts, which would allow the flow of current to continue. Therefore, circuit breakers must incorporate various features to divide and extinguish the arc. In air-insulated and miniature breakers an arc chute structure consisting (often) of metal plates or ceramic ridges cools the arc, and blowout coils deflect the arc into the arc chute. Larger circuit breakers such as those used in electrical power distribution may use vacuum, an inert gas such as sulfur hexafluoride or have contacts immersed in oil to suppress the arc.
The maximum short-circuit current that a breaker can interrupt is determined by testing. Application of a breaker in a circuit with a prospective short-circuit current higher than the breaker's interrupting capacity rating may result in failure of the breaker to safely interrupt a fault. In a worst-case scenario the breaker may successfully interrupt the fault, only to explode when reset, injuring the technician.
Small circuit breakers are either installed directly in equipment, or are arranged in a breaker panel. Power circuit breakers are built into switchgear cabinets. High-voltage breakers may be free-standing outdoor equipment or a component of a gas-insulated switchgear line-up.
[edit] Domestic circuit breakers
Photo of inside of a circuit breaker
To meet Wikipedia's quality standards, this article or section may require cleanup because it is in a list format that may be better presented using prose.
You can help by converting this section to prose, if appropriate. Editing help is available.
This section has been tagged since October 2007.
The 10 ampere DIN rail mounted thermal-magnetic miniature circuit breaker is the most common style in modern domestic consumer units and commercial electrical distribution boards throughout Europe. The design includes the following components:
1. Actuator lever - used to manually trip and reset the circuit breaker. Also indicates the status of the circuit breaker (On or Off/tripped). Most breakers are designed so they can still trip even if the lever is held or locked in the on position. This is sometimes referred to as "free trip" or "positive trip" operation.
2. Actuator mechanism - forces the contacts together or apart.
3. Contacts - Allow current to flow when touching and break the flow of current when moved apart.
4. Terminals
5. Bimetallic strip
6. Calibration screw - allows the manufacturer to precisely adjust the trip current of the device after assembly.
7. Solenoid
8. Arc divider / extinguisher
[edit] Rated current
International Standard IEC 60898-1 and European Standard EN 60898-1 define the rated current In of a circuit breaker for household applications as the current that the breaker is designed to carry continuously (at an ambient air temperature of 30 °C). The commonly-available preferred values for the rated current are 6 A, 10 A, 13 A, 16 A, 20 A, 25 A, 32 A, 40 A, 50 A, 63 A, 80 A and 100 A[1] (Renard series, slightly modified to include current limit of British BS 1363 sockets). The circuit breaker is labeled with the rated current in ampere, but without the unit symbol "A". Instead, the ampere figure is preceded by a letter "B", "C" or "D" that indicates the instantaneous tripping current, that is the minimum value of current that causes the circuit-breaker to trip without intentional time delay (i.e., in less than 100 ms):
Type Instantaneous tripping current
B above 3In up to and including 5In
C above 5In up to and including 10In
D above 10In up to and including 20In
K above 8In up to and including 12In
For the protection of loads that cause frequent short duration (approximately 400ms to 2s) current peaks in normal operation.
Z above 2In up to and including 3In for periods in the order of tens of seconds.
For the protection of loads such as semiconductor devices or measuring circuits using current transformers.
[edit] Common trip breakers
Three pole common trip breaker for supplying a three-phase device. This breaker has a 2 A rating
When supplying a branch circuit with more than one live conductor, each live conductor must be protected by a breaker pole. To ensure that all live conductors are interrupted when any pole trips, a "common trip" breaker must be used. These may either contain two or three tripping mechanisms within one case, or for small breakers, may externally tie the poles together via their operating handles. Two pole common trip breakers are common on 120/240 volt systems where 240 volt loads (including major appliances or further distribution boards) span the two live wires. Three pole common trip breakers are typically used to supply three phase power to large motors or further distribution boards.
[edit] Types of circuit breaker
Front panel of a 1250 A air circuit breaker manufactured by ABB. The breaker can be withdrawn from its housing for servicing. Trip characteristics are configurable via DIP switches on the front panel.
There are many different technologies used in circuit breakers and they do not always fall into distinct categories. Types that are common in domestic, commercial and light industrial applications at low voltage (less than 1000 V) include:
• MCB (Miniature Circuit Breaker)—rated current not more than 100 A. Trip characteristics normally not adjustable. Thermal or thermal-magnetic operation. Breakers illustrated above are in this category.
• MCCB (Moulded Case Circuit Breaker)—rated current up to 1000 A. Thermal or thermal-magnetic operation. Trip current may be adjustable.
Electric power systems require the breaking of higher currents at higher voltages. Examples of high-voltage AC circuit breakers are:
• Vacuum circuit breaker—With rated current up to 3000 A, these breakers interrupt the current by creating and extinguishing the arc in a vacuum container. These can only be practically applied for voltages up to about 35,000 V, which corresponds roughly to the medium-voltage range of power systems. Vacuum circuit breakers tend to have longer life expectancies between overhaul than do air circuit breakers.
• Air circuit breaker—Rated current up to 10,000 A. Trip characteristics are often fully adjustable including configurable trip thresholds and delays. Usually electronically controlled, though some models are microprocessor controlled via an integral electronic trip unit. Often used for main power distribution in large industrial plant, where the breakers are arranged in draw-out enclosures for ease of maintenance.
[edit] High-voltage circuit breakers
A 1200 A 3-pole 115,000 V breaker at a generating station in Manitoba, Canada.
Electrical power transmission networks are protected and controlled by high-voltage breakers. The definition of "high voltage" varies but in power transmission work is usually thought to be 72,500 V or higher, according to a recent definition by the International Electrotechnical Commission (IEC). High-voltage breakers are nearly always solenoid-operated, with current sensing protective relays operated through current transformers. In substations the protection relay scheme can be complex, protecting equipment and busses from various types of overload or ground/earth fault.
High-voltage breakers are broadly classified by the medium used to extinguish the arc.
• Oil-filled (dead tank and live tank)
• Oil-filled, minimum oil volume
• Air blast
• Sulfur hexafluoride
breakers are routinely available up to 765 kV AC.
Live tank circuit breakers are where the enclosure that contains the breaking mechanism is at line potential, that is, "Live". Dead tank circuit breaker enclosures are at earth potential.
[edit] Interrupting principles for high-voltage circuit-breakers
High-voltage circuit-breakers have greatly changed since they were first introduced about 40 years ago, and several interrupting principles have been developed that have contributed successively to a large reduction of the operating energy.
Current interruption in a high-voltage circuit-breaker is obtained by separating two contacts in a medium, such as sulfur hexafluoride (SF6), having excellent dielectrical and arc quenching properties. After contact separation, current is carried through an arc and is interrupted when this arc is cooled by a gas blast of sufficient intensity.
Gas blast applied on the arc must be able to cool it rapidly so that gas temperature between the contacts is reduced from 20,000 K to less than 2000 K in a few hundred microseconds, so that it is able to withstand the transient recovery voltage that is applied across the contacts after current interruption. Sulfur hexafluoride is generally used in present high-voltage circuit-breakers (of rated voltage higher than 52 kV).
In the 1980s and 1990s, the pressure necessary to blast the arc was generated mostly by gas heating using arc energy. It is now possible to use low energy spring-loaded mechanisms to drive high-voltage circuit-breakers up to 800 kV.
[edit] Brief history
The first patents on the use of SF6 as an interrupting medium was filed in Germany in 1938 by Vitaly Grosse (AEG) and independently later in the USA in July 1951 by H.J. Lingal, T.E. Browne and A.P. Storm (Westinghouse). The first industrial application of SF6 for current interruption dates back to 1953. High-voltage 15 kV to 161 kV load switches were developed with a breaking capacity of 600 A. The first high-voltage SF6 circuit-breaker built in 1956 by Westinghouse, could interrupt 5 kA under 115 kV, but it had 6 interrupting chambers in series per pole. In 1957, the puffer-type technique was introduced for SF6 circuit breakers where the relative movement of a piston and a cylinder linked to the moving part is used to generate the pressure rise necessary to blast the arc via a nozzle made of insulating material (figure 1). In this technique, the pressure rise is obtained mainly by gas compression. The first high-voltage SF6 circuit-breaker with a high short-circuit current capability was produced by Westinghouse in 1959. This dead tank circuit-breaker could interrupt 41.8 kA under 138 kV (10,000 MV•A) and 37.6 kA under 230 kV (15,000 MV•A). This performance were already significant, but the three chambers per pole and the high pressure source needed for the blast (1.35 MPa) was a constraint that had to be avoided in subsequent developments. The excellent properties of SF6 lead to the fast extension of this technique in the 1970s and to its use for the development of circuit breakers with high interrupting capability, up to 800 kV.
The achievement around 1983 of the first single-break 245 kV and the corresponding 420kV to 550 kV and 800 kV, with respectively 2, 3, and 4 chambers per pole, lead to the dominance of SF6 circuit breakers in the complete range of high voltages.
Several characteristics of SF6 circuit breakers can explain their success:
• Simplicity of the interrupting chamber which does not need an auxiliary breaking chamber;
• Autonomy provided by the puffer technique;
• The possibility to obtain the highest performance, up to 63 kA, with a reduced number of interrupting chambers;
• Short break time of 2 to 2.5 cycles;
• High electrical endurance, allowing at least 25 years of operation without reconditioning;
• Possible compact solutions when used for GIS or hybrid switchgear;
• Integrated closing resistors or synchronised operations to reduce switching overvoltages;
• Reliability and availability;
• Low noise levels.
The reduction in the number of interrupting chambers per pole has led to a considerable simplification of circuit breakers as well as the number of parts and seals required. As a direct consequence, the reliability of circuit breakers improved, as verified later on by CIGRE surveys.
[edit] Thermal blast chambers
New types of SF6 breaking chambers, which implement innovative interrupting principles, have been developed over the past 15 years, with the objective of reducing the operating energy of the circuit-breaker. One aim of this evolution was to further increase the reliability by reducing the dynamic forces in the pole. Developments since 1996 have seen the use of the self-blast technique of interruption for SF6 interrupting chambers.
These developments have been facilitated by the progress made in digital simulations that were widely used to optimize the geometry of the interrupting chamber and the linkage between the poles and the mechanism.
This technique has proved to be very efficient and has been widely applied for high voltage circuit breakers up to 550 kV. It has allowed the development of new ranges of circuit breakers operated by low energy spring-operated mechanisms.
The reduction of operating energy was mainly achieved by the lowering energy used for gas compression and by making increased use of arc energy to produce the pressure necessary to quench the arc and obtain current interruption. Low current interruption, up to about 30% of rated short-circuit current, is obtained by a puffer blast.
[edit] Self-blast chambers
Further development in the thermal blast technique was made by the introduction of a valve between the expansion and compression volumes. When interrupting low currents the valve opens under the effect of the overpressure generated in the compression volume. The blow-out of the arc is made as in a puffer circuit breaker thanks to the compression of the gas obtained by the piston action. In the case of high currents interruption, the arc energy produces a high overpressure in the expansion volume, which leads to the closure of the valve and thus isolating the expansion volume from the compression volume. The overpressure necessary for breaking is obtained by the optimal use of the thermal effect and of the nozzle clogging effect produced whenever the cross-section of the arc significantly reduces the exhaust of gas in the nozzle. In order to avoid excessive energy consumption by gas compression, a valve is fitted on the piston in order to limit the overpressure in the compression to a value necessary for the interruption of low short circuit currents.
This technique, known as “self-blast” has now been used extensively since 1996 for the development of many types of interrupting chambers. The increased understanding of arc interruption obtained by digital simulations and validation through breaking tests, contribute to a higher reliability of these self-blast circuit breakers. In addition the reduction in operating energy, allowed by the self blast technique, leads to longer service life.
[edit] Double motion of contacts
An important decrease in operating energy can also be obtained by reducing the kinetic energy consumed during the tripping operation. One way is to displace the two arcing contacts in opposite directions so that the arc speed is half that of a conventional layout with a single mobile contact.
The thermal and self blast principles have enabled the use of low energy spring mechanisms for the operation of high voltage circuit breakers. They progressively replaced the puffer technique in the 1980s; first in 72.5 kV breakers, and then from 145 kV to 800 kV.
[edit] Comparison of single motion and double motion techniques
The double motion technique halves the tripping speed of the moving part. In principle, the kinetic energy could be quartered if the total moving mass was not increased. However, as the total moving mass is increased, the practical reduction in kinetic energy is closer to 60%. The total tripping energy also includes the compression energy, which is almost the same for both techniques. Thus, the reduction of the total tripping energy is lower, about 30%, although the exact value depends on the application and the operating mechanism. Depending on the specific case, either the double motion or the single motion technique can be cheaper. Other considerations, such as rationalization of the circuit-breaker range, can also influence the cost.
[edit] Thermal blast chamber with arc-assisted opening
In this interruption principle arc energy is used, on the one hand to generate the blast by thermal expansion and, on the other hand, to accelerate the moving part of the circuit breaker when interrupting high currents. The overpressure produced by the arc energy downstream of the interruption zone is applied on an auxiliary piston linked with the moving part. The resulting force accelerates the moving part, thus increasing the energy available for tripping.
With this interrupting principle it is possible, during high-current interruptions, to increase by about 30% the tripping energy delivered by the operating mechanism and to maintain the opening speed independently of the current. It is obviously better suited to circuit-breakers with high breaking currents such as Generator circuit-breakers.
[edit] Generator circuit-breakers
Generator circuit-breakers are connected between a generator and the step-up voltage transformer. They are generally used at the outlet of high power generators (100 MVA to 1800 MVA) in order to protect them in a reliable, fast and economic manner. Such circuit breakers must be able to allow the passage of high permanent currents under continuous service (6.3 kA to 40 kA), and have a high breaking capacity (63 kA to 275 kA). They belong to the medium voltage range, but the TRV withstand capability required by ANSI/IEEE Standard C37.013 is such that the interrupting principles developed for the high-voltage range must be used. A particular embodiment of the thermal blast technique has been developed and applied to generator circuit-breakers. The self-blast technique described above is also widely used in SF6 generator circuit breakers, in which the contact system is driven by a low-energy, spring-operated mechanism. An example of such a device is shown in the figure below; this circuit breaker is rated for 17.5 kV and 63 kA.
Generator circuit breaker rated for 17.5 kV and 63 kA
[edit] Evolution of tripping energy
The operating energy has been reduced by 5 to 7 times during this period of 27 years. This illustrates well the great progress made in this field of interrupting techniques for high-voltage circuit-breakers.
[edit] Future perspectives
In the near future, present interrupting technologies can be applied to circuit-breakers with the higher rated breaking currents (63 kA to 80 kA) required in some networks with increasing power generation.
Self blast or thermal blast circuit breakers are nowadays accepted world wide[citation needed] and they have been in service for high voltage applications for about 15 years[citation needed], starting with the voltage level of 72.5 kV. Today this technique is also available for the voltage levels 420/550/800 kV.
[edit] Other breakers
The following types are described in separate articles.
• Breakers for protections against earth faults too small to trip an overcurrent device:
o RCD—Residual Current Device (formerly known as a Residual Current Circuit Breaker) - detects current imbalance. Does NOT provide overcurrent protection.
o RCBO—Residual Current Breaker with Overcurrent protection - combines the functions of an RCD and an MCB in one package. In the United States and Canada, panel-mounted devices that combine ground(earth) fault detection and overcurrent protection are called Ground Fault Circuit Interrupter (GFCI) breakers; a wall mounted outlet device providing ground fault detection only is called a GFI.
o ELCB—Earth leakage circuit breaker. This detects earth current directly rather than detecting imbalance. They are no longer seen in new installations for various reasons.
• Autorecloser A type of circuit breaker which closes again after a delay. These are used on overhead power distribution systems, to prevent short duration faults from causing sustained outages.
• Polyswitch (polyfuse) A small device commonly described as an automatically-resetting fuse rather than a circuit breaker.
An electric motor converts electrical energy into mechanical energy. The reverse process, that of converting mechanical energy into electrical energy, is accomplished by a generator or dynamo. Traction motors used on locomotives often perform both tasks if the locomotive is equipped with dynamic brakes. Electric motors are found in household appliances such as fans, refrigerators, washing machines, pool pumps and fan-forced ovens.
Most electric motors work by electromagnetism, but motors based on other electromechanical phenomena, such as electrostatic forces and the piezoelectric effect, also exist. The fundamental principle upon which electromagnetic motors are based is that there is a mechanical force on any current-carrying wire contained within a magnetic field. The force is described by the Lorentz force law and is perpendicular to both the wire and the magnetic field. Most magnetic motors are rotary, but linear motors also exist. In a rotary motor, the rotating part (usually on the inside) is called the rotor, and the stationary part is called the stator. The rotor rotates because the wires and magnetic field are arranged so that a torque is developed about the rotor's axis. The motor contains electromagnets that are wound on a frame. Though this frame is often called the armature, that term is often erroneously applied. Correctly, the armature is that part of the motor across which the input voltage is supplied. Depending upon the design of the machine, either the rotor or the stator can serve as the armature.
Contents
[hide]
• 1 History and Development
• 2 Categorisation of Electric Motors
• 3 DC motors
o 3.1 Brushed DC motors
o 3.2 Brushless DC motors
o 3.3 Coreless DC motors
• 4 Universal motors
• 5 AC motors
o 5.1 Components
• 6 Torque motors
• 7 Slip Ring
• 8 Stepper motors
• 9 Linear motors
• 10 Doubly-fed electric motor
• 11 Singly-fed electric motor
• 12 Nanotube nanomotor
• 13 Motor standards
• 14 See also
• 15 References and further reading
• 16 External articles
[edit] History and Development
The principle of conversion of electrical energy into mechanical energy by electromagnetic means was demonstrated by the British scientist Michael Faraday in 1821 and consisted of a free-hanging wire dipping into a pool of mercury. A permanent magnet was placed in the middle of the pool of mercury. When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a circular magnetic field around the wire. This motor is often demonstrated in school physics classes, but brine (salt water) is sometimes used in place of the toxic mercury. This is the simplest form of a class of electric motors called homopolar motors. A later refinement is the Barlow's Wheel. These were demonstration devices, unsuited to practical applications due to limited power.
The first commutator-type direct-current electric motor capable of a practical application was invented by the British scientist William Sturgeon in 1832. Following Sturgeon's work, a commutator-type direct-current electric motor made with the intention of commercial use was built by the American Thomas Davenport and patented in 1837. Although several of these motors were built and used to operate equipment such as a printing press, due to the high cost of primary battery power, the motors were commercially unsuccessful and Davenport went bankrupt. Several inventors followed Sturgeon in the development of DC motors but all encountered the same cost issues with primary battery power. No electricity distribution had been developed at the time. Like Sturgeon's motor, there was no practical commercial market for these motors.
The modern DC motor was invented by accident in 1873, when Zénobe Gramme connected the dynamo he had invented to a second similar unit, driving it as a motor. The Gramme machine was the first electric motor that was successful in the industry.
In 1888 Nikola Tesla invented the first practicable AC motor and with it the polyphase power transmission system. Tesla continued his work on the AC motor in the years to follow at the Westinghouse company.
[edit] Categorisation of Electric Motors
The classic division of electric motors has been that of DC types vs AC types. This is more a de facto convention, rather than a rigid distinction. For example, many classic DC motors run happily on AC power.
The ongoing trend toward electronic control further muddles the distinction, as modern drivers have moved the commutator out of the motor shell. For this new breed of motor, driver circuits are relied upon to generate sinusoidal AC drive currents, or some approximation of. The two best examples are: the brushless DC motor, and the stepping motor, both being polyphase AC motors requiring external electronic control.
A more clear distinction is between synchronous and asynchronous types. In the synchronous types, the rotor rotates in synchrony with the oscillating field or current (eg. permanent magnet motors). In contrast, an asynchronous motor is designed to slip; the most ubiquitous example being the common AC induction motor which must slip in order to generate torque.
[edit] DC motors
A DC motor is designed to run on DC electric power. Two examples of pure DC designs are Michael Faraday's homopolar motor (which is uncommon), and the ball bearing motor, which is (so far) a novelty. By far the most common DC motor types are the brushed and brushless types, which use internal and external commutation respectively to create an oscillating AC current from the DC source -- so they are not purely DC machines in a strict sense.
[edit] Brushed DC motors
Main article: Brushed DC Electric Motor
The classic DC motor design generates an oscillating current in a wound rotor with a split ring commutator, and either a wound or permanent magnet stator.
[edit] Brushless DC motors
Main article: Brushless DC electric motor
Many of the limitations of the classic commutator DC motor are due to the need for brushes to press against the commutator. This creates friction. At higher speeds, brushes have increasing difficulty in maintaining contact. Brushes may bounce off the irregularities in the commutator surface, creating sparks. This limits the maximum speed of the machine. The current density per unit area of the brushes limits the output of the motor. The imperfect electric contact also causes electrical noise. Brushes eventually wear out and require replacement, and the commutator itself is subject to wear and maintenance. The commutator assembly on a large machine is a costly element, requiring precision assembly of many parts.
These problems are eliminated in the brushless motor. In this motor, the mechanical "rotating switch" or commutator/brushgear assembly is replaced by an external electronic switch synchronised to the rotor's position. Brushless motors are typically 85-90% efficient, whereas DC motors with brushgear are typically 75-80% efficient.
Midway between ordinary DC motors and stepper motors lies the realm of the brushless DC motor. Built in a fashion very similar to stepper motors, these often use a permanent magnet external rotor, three phases of driving coils, one or more Hall effect sensors to sense the position of the rotor, and the associated drive electronics. The coils are activated, one phase after the other, by the drive electronics as cued by the signals from the Hall effect sensors. In effect, they act as three-phase synchronous motors containing their own variable-frequency drive electronics. A specialized class of brushless DC motor controllers utilize EMF feedback through the main phase connections instead of Hall effect sensors to determine position and velocity. These motors are used extensively in electric radio-controlled vehicles, and referred to by modelists as outrunner motors (since the magnets are on the outside).
Brushless DC motors are commonly used where precise speed control is necessary, computer disk drives or in video cassette recorders the spindles within CD, CD-ROM (etc.) drives, and mechanisms within office products such as fans, laser printers and photocopiers. They have several advantages over conventional motors:
• Compared to AC fans using shaded-pole motors, they are very efficient, running much cooler than the equivalent AC motors. This cool operation leads to much-improved life of the fan's bearings.
• Without a commutator to wear out, the life of a DC brushless motor can be significantly longer compared to a DC motor using brushes and a commutator. Commutation also tends to cause a great deal of electrical and RF noise; without a commutator or brushes, a brushless motor may be used in electrically sensitive devices like audio equipment or computers.
• The same Hall effect sensors that provide the commutation can also provide a convenient tachometer signal for closed-loop control (servo-controlled) applications. In fans, the tachometer signal can be used to derive a "fan OK" signal.
• The motor can be easily synchronized to an internal or external clock, leading to precise speed control.
• Brushless motors have no chance of sparking, unlike brushed motors, making them better suited to environments with volatile chemicals and fuels.
• Brushless motors are usually used in small equipment such as computers and are generally used to get rid of unwanted heat.
• They are also very quiet motors which is an advantage if being used in equipment that is affected by vibrations.
Modern DC brushless motors range in power from a fraction of a watt to many kilowatts. Larger brushless motors up to about 100 kW rating are used in electric vehicles. They also find significant use in high-performance electric model aircraft.
[edit] Coreless DC motors
Nothing in the design of any of the motors described above requires that the iron (steel) portions of the rotor actually rotate; torque is exerted only on the windings of the electromagnets. Taking advantage of this fact is the coreless DC motor, a specialized form of a brush or brushless DC motor. Optimized for rapid acceleration, these motors have a rotor that is constructed without any iron core. The rotor can take the form of a winding-filled cylinder inside the stator magnets, a basket surrounding the stator magnets, or a flat pancake (possibly formed on a printed wiring board) running between upper and lower stator magnets. The windings are typically stabilized by being impregnated with epoxy resins.
Because the rotor is much lighter in weight (mass) than a conventional rotor formed from copper windings on steel laminations, the rotor can accelerate much more rapidly, often achieving a mechanical time constant under 1 ms. This is especially true if the windings use aluminum rather than the heavier copper. But because there is no metal mass in the rotor to act as a heat sink, even small coreless motors must often be cooled by forced air.
These motors were commonly used to drive the capstan(s) of magnetic tape drives and are still widely used in high-performance servo-controlled systems, like humanoid robotic systems, industrial automation, medical devices, etc.
[edit] Universal motors
A variant of the wound field DC motor is the universal motor. The name derives from the fact that it may use AC or DC supply current, although in practice they are nearly always used with AC supplies. The principle is that in a wound field DC motor the current in both the field and the armature (and hence the resultant magnetic fields) will alternate (reverse polarity) at the same time, and hence the mechanical force generated is always in the same direction. In practice, the motor must be specially designed to cope with the AC current (impedance must be taken into account, as must the pulsating force), and the resultant motor is generally less efficient than an equivalent pure DC motor. Operating at normal power line frequencies, the maximum output of universal motors is limited and motors exceeding one kilowatt are rare. But universal motors also form the basis of the traditional railway traction motor in electric railways. In this application, to keep their electrical efficiency high, they were operated from very low frequency AC supplies, with 25 Hz and 16 2/3 hertz operation being common. Because they are universal motors, locomotives using this design were also commonly capable of operating from a third rail powered by DC.
The advantage of the universal motor is that AC supplies may be used on motors which have the typical characteristics of DC motors, specifically high starting torque and very compact design if high running speeds are used. The negative aspect is the maintenance and short life problems caused by the commutator. As a result such motors are usually used in AC devices such as food mixers and power tools which are used only intermittently. Continuous speed control of a universal motor running on AC is very easily accomplished using a thyristor circuit, while stepped speed control can be accomplished using multiple taps on the field coil. Household blenders that advertise many speeds frequently combine a field coil with several taps and a diode that can be inserted in series with the motor (causing the motor to run on half-wave rectified AC).
Universal motors can rotate at relatively high revolutions per minute (rpm). This makes them useful for appliances such as blenders, vacuum cleaners, and hair dryers where high-speed operation is desired. Many vacuum cleaner and weed trimmer motors exceed 10,000 rpm, Dremel and other similar miniature grinders will often exceed 30,000 rpm. Motor damage may occur due to overspeed (rpm in excess of design specifications) if the unit is operated with no significant load. On larger motors, sudden loss of load is to be avoided, and the possibility of such an occurrence is incorporated into the motor's protection and control schemes. Often, a small fan blade attached to the armature acts as an artificial load to limit the motor speed to a safe value, as well as provide cooling airflow to the armature and field windings.
With the very low cost of semiconductor rectifiers, some applications that would have previously used a universal motor now use a pure DC motor, sometimes with a permanent magnet field.
[edit] AC motors
Main article: AC motor
In 1882, Nikola Tesla identified the rotating magnetic field principle, and pioneered the use of a rotary field of force to operate machines. He exploited the principle to design a unique two-phase induction motor in 1883. In 1885, Galileo Ferraris independently researched the concept. In 1888, Ferraris published his research in a paper to the Royal Academy of Sciences in Turin.
Introduction of Tesla's motor from 1888 onwards initiated what is sometimes referred to as the Second Industrial Revolution, making possible the efficient generation and long distance distribution of electrical energy using the alternating current transmission system, also of Tesla's invention (1888).[1] Before the invention of the rotating magnetic field, motors operated by continually passing a conductor through a stationary magnetic field (as in homopolar motors).
Tesla had suggested that the commutators from a machine could be removed and the device could operate on a rotary field of force. Professor Poeschel, his teacher, stated that would be akin to building a perpetual motion machine.[2] Tesla would later attain U.S. Patent 0,416,194 , Electric Motor (December 1889), which resembles the motor seen in many of Tesla's photos. This classic alternating current electro-magnetic motor was an induction motor.
Michail Osipovich Dolivo-Dobrovolsky later invented a three-phase "cage-rotor" in 1890. This type of motor is now used for the vast majority of commercial applications.
[edit] Components
A typical AC motor consists of two parts:
1. An outside stationary stator having coils supplied with AC current to produce a rotating magnetic field, and;
2. An inside rotor attached to the output shaft that is given a torque by the rotating field.
[edit] Torque motors
A torque motor is a specialized form of induction motor which is capable of operating indefinitely at stall (with the rotor blocked from turning) without damage. In this mode, the motor will apply a steady torque to the load (hence the name). A common application of a torque motor would be the supply- and take-up reel motors in a tape drive. In this application, driven from a low voltage, the characteristics of these motors allow a relatively-constant light tension to be applied to the tape whether or not the capstan is feeding tape past the tape heads. Driven from a higher voltage, (and so delivering a higher torque), the torque motors can also achieve fast-forward and rewind operation without requiring any additional mechanics such as gears or clutches. In the computer world, torque motors are used with force feedback steering wheels.
[edit] Slip Ring
The slip ring or wound rotor motor is an induction machine where the rotor comprises a set of coils that are terminated in slip rings to which external impedances can be connected. The stator is the same as is used with a standard squirrel cage motor.
By changing the impedance connected to the rotor circuit, the speed/current and speed/torque curves can be altered.
The slip ring motor is used primarily to start a high inertia load or a load that requires a very high starting torque across the full speed range. By correctly selecting the resistors used in the secondary resistance or slip ring starter, the motor is able to produce maximum torque at a relatively low current from zero speed to full speed. A secondary use of the slip ring motor is to provide a means of speed control. Because the torque curve of the motor is effectivley modified by the resistance connected to the rotor circuit, the speed of the motor can be altered. Increasing the value of resistance on the rotor circuit will move the speed of maximum torque down. If the resistance connected to the rotor is increased beyond the point where the maximum torque occurs at zero speed, the torque will be further reduced.
When used with a load that has a torque curve that increases with speed, the motor will operate at the speed where the torque developed by the motor is equal to the load torque. Reducing the load will cause the motor to speed up, and increasing the load will cause the motor to slow down until the load and motor torque are equal. Operated in this manner, the slip losses are dissipated in the secondary resistors and can be very significant. The speed regulation is also very poor.
[edit] Stepper motors
Main article: Stepper motor
Closely related in design to three-phase AC synchronous motors are stepper motors, where an internal rotor containing permanent magnets or a large iron core with salient poles is controlled by a set of external magnets that are switched electronically. A stepper motor may also be thought of as a cross between a DC electric motor and a solenoid. As each coil is energized in turn, the rotor aligns itself with the magnetic field produced by the energized field winding. Unlike a synchronous motor, in its application, the motor may not rotate continuously; instead, it "steps" from one position to the next as field windings are energized and de-energized in sequence. Depending on the sequence, the rotor may turn forwards or backwards.
Simple stepper motor drivers entirely energize or entirely de-energize the field windings, leading the rotor to "cog" to a limited number of positions; more sophisticated drivers can proportionally control the power to the field windings, allowing the rotors to position "between" the "cog" points and thereby rotate extremely smoothly. Computer controlled stepper motors are one of the most versatile forms of positioning systems, particularly when part of a digital servo-controlled system.
Stepper motors can be rotated to a specific angle with ease, and hence stepper motors are used in pre-gigabyte era computer disk drives, where the precision they offered was adequate for the correct positioning of the read/write head of a hard disk drive. As drive density increased, the precision limitations of stepper motors made them obsolete for hard drives, thus newer hard disk drives use read/write head control systems based on voice coils.
Stepper motors were upscaled to be used in electric vehicles under the term SRM (switched reluctance machine).
[edit] Linear motors
Main article: Linear motor
A linear motor is essentially an electric motor that has been "unrolled" so that, instead of producing a torque (rotation), it produces a linear force along its length by setting up a traveling electromagnetic field.
Linear motors are most commonly induction motors or stepper motors. You can find a linear motor in a maglev (Transrapid) train, where the train "flies" over the ground, and in many roller-coasters where the rapid motion of the motorless railcar is controlled by the rail.
[edit] Doubly-fed electric motor
Doubly-fed electric motors have two independent multiphase windings that actively participate in the energy conversion process with at least one of the winding sets electronically controlled for variable speed operation. Two is the most active multiphase winding sets possible without duplicating singly-fed or doubly-fed categories in the same package. As a result, doubly-fed electric motors are machines with an effective constant torque speed range that is twice synchronous speed for a given frequency of excitation. This is twice the constant torque speed range as singly-fed electric machines, which have only one active winding set.
A doubly-fed motor allows for a smaller electronic converter but the cost of the rotor winding and slip rings may offset the saving in the power electronics components. Difficulties with controlling speed near synchronous speed limit applications. [3]
[edit] Singly-fed electric motor
Singly-fed electric machines incorporate a single multiphase winding set that is connected to a power supply. Singly-fed electric machines may be either induction or synchronous. The active winding set can be electronically controlled. Induction machines develop starting torque at zero speed and can operate as standalone machines. Synchronous machines must have auxiliary means for startup, such as a starting induction squirrel-cage winding or an electronic controller. Singly-fed electric machines have an effective constant torque speed range up to synchronous speed for a given excitation frequency.
The induction (asynchronous) motors (i.e., squirrel cage rotor or wound rotor), synchronous motors (i.e., field-excited, permanent magnet or brushless DC motors, reluctance motors, etc.), which are discussed on this page, are examples of singly-fed motors. By far, singly-fed motors are the predominantly installed type of motors.
[edit] Nanotube nanomotor
Main article: Nanomotor
Nanomotor constructed at UC Berkeley. The motor is about 500nm across: 300 times smaller than the diameter of a human hair
Researchers at University of California, Berkeley, recently developed rotational bearings based upon multiwall carbon nanotubes. By attaching a gold plate (with dimensions of the order of 100nm) to the outer shell of a suspended multiwall carbon nanotube (like nested carbon cylinders), they are able to electrostatically rotate the outer shell relative to the inner core. These bearings are very robust; devices have been oscillated thousands of times with no indication of wear. These nanoelectromechanical systems (NEMS) are the next step in miniaturization that may find their way into commercial aspects in the future.
• Electrostatic motor
[edit] Motor standards
The following are major design and manufacturing standards covering electric motors:
• International Electrotechnical Commission: IEC 60034 Rotating Electrical Machines
• National Electrical Manufacturers Association (USA): NEMA MG 1 Motors and Generators
An eddy current (also known as Foucault current) is an electrical phenomenon discovered by French physicist Léon Foucault in 1851. It is caused when a moving (or changing) magnetic field intersects a conductor, or vice-versa. The relative motion causes a circulating flow of electrons, or current, within the conductor. These circulating eddies of current create electromagnets with magnetic fields that oppose the effect of the applied magnetic field (see Lenz's law). The stronger the applied magnetic field, or greater the electrical conductivity of the conductor, or greater the relative velocity of motion, the greater the currents developed and the greater the opposing field.
It is important to appreciate that eddy currents are created when a conductor moves across a stationary magnetic field, as well as when a stationary conductor encounters a varying magnetic field. Both effects are present when a conductor moves through a varying magnetic field, as is the case at the top and bottom edges of the magnetized region shown in the diagram. Eddy currents will be present wherever the conducting object, which is moving, experiences a magnetic field, and not just at the boundaries. However, in some geometries, transient eddy currents can cause charges to collect on the extremities of the object and these charges then produce electric fields that oppose any further flow of current.
The swirling current set up in the conductor is due to electrons experiencing a Lorentz force that is perpendicular to their motion. Hence, they veer to their right, or left, depending on the direction of the applied field and whether the strength of the field is increasing or declining. The resistivity of the conductor acts to damp the amplitude of the eddy currents, as well as straighten their paths. Lenz's law encapsulates the fact that the current swirls in such a way as to create an induced magnetic field that opposes the phenomenon that created it. In the case of a varying applied field, the induced field will always be in the opposite direction to that applied. The same will be true when a varying external field is increasing in strength. However, when a varying field is falling in strength, the induced field will be in the same direction as that applied, in order to oppose the decline.
Eddy currents create losses through Joule heating. More accurately, eddy currents transform useful forms of energy, such as kinetic energy, into heat, which is generally much less useful. Hence they reduce the efficiency of many devices that use changing magnetic fields, such as iron-core transformers and electric motors. They are minimized by selecting magnetic core materials that have low electrical conductivity (e.g., ferrites) or by using thin sheets of magnetic material, known as laminations. Electrons cannot cross the insulating gap between the laminations and so are unable to circulate on wide arcs. Charges gather at the lamination boundaries, in a process analogous to the Hall effect, producing electric fields that oppose any further accumulation of charge and hence suppressing the flow of eddy currents. The shorter the distance between adjacent laminations (i.e., the greater the number of laminations per unit area, perpendicular to the applied field), the greater the suppression of eddy currents.
The loss of useful energy is not always undesirable, however, as there are some practical applications. One is in the brakes of some trains known as an eddy current brake. During braking, the metal wheels are exposed to a magnetic field from an electromagnet, generating eddy currents in the wheels. The eddy currents meet resistance as they flow through the metal, thus dissipating energy as heat, and this acts to slow the wheels down. The faster the wheels are spinning, the stronger the effect, meaning that as the train slows the braking force is reduced, producing a smooth stopping motion.
The term eddy current comes from analogous currents seen in water when dragging an oar: localised areas of turbulence known as eddies give rise to persistent vortices.
Contents
[hide]
• 1 Applications
o 1.1 Electrical
o 1.2 Mechanical
1.2.1 Structural Testing
o 1.3 Side Effects
o 1.4 Other Applications
• 2 References
• 3 External links
• 4 See Also
[edit] Applications
[edit] Electrical
Eddy currents are used to great effect in movement-to-electricity converters such as electrical generators and dynamic microphones. They can also be used to induce a magnetic field in aluminum cans, which allows them to be separated easily from other recyclables. Superconductors allow perfect, lossless conduction, which creates eddy currents that are equal and opposite to the external magnetic field, thus allowing magnetic levitation. For the same reason, the magnetic field inside a superconducting medium will be exactly zero, regardless of the external applied field.
[edit] Mechanical
Eddy currents are used for braking at the end of some roller coasters. This mechanism has no mechanical wear and produces a very precise braking force. Typically, heavy copper plates extending from the car are moved between pairs of very strong permanent magnets. Electrical resistance within the plates causes a dragging effect analogous to friction, which dissipates the kinetic energy of the car.
[edit] Structural Testing
Eddy current techniques are commonly used for the nondestructive examination (NDE) and condition monitoring of a large variety of metallic structures, including heat exchanger tubes, aircraft fuselage, and aircraft structural components.
Another eddy current technique for nondestructive testing was developed by Dr. Abdollah Abtahi using the Fourier transform method in 1981. This technique allowed small flaw detection in a large area much faster than any other technique. This method predicts very accurate results for small flaws in a large area. This method can be applied for testing any flaws in an airplane body/fuselage or a large satellite dish. This research was supported with a grant by the Electric Power Research Institute (EPRI).
[edit] Side Effects
Eddy currents are the root cause of the skin effect in conductors carrying AC current.
Electrical generator
From Wikipedia, the free encyclopedia
• Learn more about citing Wikipedia •
Jump to: navigation, search
This article is about machines that produce electricity. For other uses, see Generator.
“Dynamo” redirects here. For other uses, see Dynamo (disambiguation).
Early 20th century alternator made in Budapest, Hungary, in the power generating hall of a hydroelectric station
In electricity generation, an electrical generator is a device that converts kinetic energy to electrical energy, generally using electromagnetic induction. The reverse conversion of electrical energy into mechanical energy is done by a motor, and motors and generators have many similarities. The source of mechanical energy may be a reciprocating or turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, or any other source of mechanical energy.
Contents
[hide]
• 1 Historic developments
o 1.1 Faraday
o 1.2 Dynamo
o 1.3 Jedlik's dynamo
o 1.4 Gramme dynamo
o 1.5 Other Rotating Electromagnetic Generators
o 1.6 MHD generator
• 2 Concepts
• 3 Excitation
• 4 Terminology
• 5 Equivalent circuit
o 5.1 Maximum power
• 6 Vehicle-mounted generators
• 7 Engine-generator
o 7.1 Hand portable emergency generators
o 7.2 Mid-size stationary engine-generator
• 8 Patents
• 9 See also
• 10 External links
[edit] Historic developments
Electrostatic generators are used for scientific experiments requiring high voltages. Because of the difficulty of insulating machines producing very high voltages, electrostatic generators are made only with low power ratings and are never used for generation of commercially-significant quantities of electric power. Before the connection between magnetism and electricity was discovered, generators used electrostatic principles. The Wimshurst machine used electrostatic induction or "influence". Some electrostatic machines (such as the more modern Van de Graaff generator) uses either of two mechanisms:
• Charge transferred from a high-voltage electrode
• Charge created by the triboelectric effect using the separation of two insulators (the belt leaving the lower pulley)
[edit] Faraday
Portable generator side view showing gasoline engine.
In 1831-1832 Michael Faraday discovered that a potential difference is generated between the ends of an electrical conductor that moves perpendicular to a magnetic field. He also built the first electromagnetic generator called the 'Faraday disc', a type of homopolar generator, using a copper disc rotating between the poles of a horseshoe magnet. It produced a small DC voltage, and large amounts of current.
[edit] Dynamo
The Dynamo was the first electrical generator capable of delivering power for industry. The dynamo uses electromagnetic principles to convert mechanical rotation into a pulsing direct electric current through the use of a commutator. A dynamo machine consists of a stationary structure, which provides a constant magnetic field, and a set of rotating windings which turn within that field. On small machines the constant magnetic field may be provided by one or more permanent magnets; larger machines have the constant magnetic field provided by one or more electromagnets, which are usually called field coils.
The first dynamo based on Faraday's principles was built in 1832 by Hippolyte Pixii, a French instrument maker. It used a permanent magnet which was rotated by a crank. The spinning magnet was positioned so that its north and south poles passed by a piece of iron wrapped with wire. Pixii found that the spinning magnet produced a pulse of current in the wire each time a pole passed the coil. Furthermore, the north and south poles of the magnet induced currents in opposite directions. By adding a commutator, Pixii was able to convert the alternating current to direct current.
Unlike the Faraday disc, many turns of wire connected in series can be used in the moving windings of a dynamo. This allows the terminal voltage of the machine to be higher than a disc can produce, so that electrical energy can be delivered at a convenient voltage.
Two dynamos acting on each other to balance power differences between two loads. The two separate dynamos can be merged together into a single frame.
The relationship between mechanical rotation and electric current in a dynamo is reversible; the principles of the electric motor were discovered when it was found that one dynamo could cause a second interconnected dynamo to rotate if current was fed through it.
The transformative ability of a dynamo to change energy from electrical power to mechanical power and back again could be exploited as a current-compensation and balancing device to even out power distribution on interconnected, unbalanced circuits.
[edit] Jedlik's dynamo
Ányos Jedlik's single pole electric starter (dynamo) (1861)
In 1827, Hungarian Anyos Jedlik started experimenting with electromagnetic rotating devices which he called electromagnetic self-rotors. In the prototype of the single-pole electric starter (finished between 1852 and 1854) both the stationary and the revolving parts were electromagnetic. He formulated the concept of the dynamo at least 6 years before Siemens and Wheatstone. In essence the concept is that instead of permanent magnets, two electromagnets opposite to each other induce the magnetic field around the rotor.
[edit] Gramme dynamo
Both of these designs suffered from a similar problem: they induced "spikes" of current followed by none at all. Antonio Pacinotti, an Italian scientist, fixed this by replacing the spinning coil with a toroidal one, which he created by wrapping an iron ring. This meant that some part of the coil was continually passing by the magnets, smoothing out the current. Zénobe Gramme reinvented this design a few years later when designing the first commercial power plants, which operated in Paris in the 1870s. His design is now known as the Gramme dynamo. Various versions and improvements have been made since then, but the basic concept of a spinning endless loop of wire remains at the heart of all modern dynamos.
[edit] Other Rotating Electromagnetic Generators
Without a commutator, the dynamo is an example of an alternator, which is a synchronous singly-fed generator. With an electromechanical commutator, the dynamo is a classical direct current (DC) generator. The alternator must always operate at a constant speed that is precisely synchronized to the electrical frequency of the power grid for non-destructive operation. The DC generator can operate at any speed within mechanical limits but always outputs a direct current waveform.
Other types of generators, such as the asynchronous or induction singly-fed generator, the doubly-fed generator, or the brushless wound-rotor doubly-fed generator, do not incorporate permanent magnets or field windings (i.e, electromagnets) that establish a constant magnetic field, and as a result, are seeing success in variable speed constant frequency applications, such as wind turbines or other renewable energy techologies.
The full output performance of any generator can be optimized with electronic control but only the doubly-fed generators or the brushless wound-rotor doubly-fed generator incorporate electronic control with power ratings that are substantially less than the power output of the generator under control, which by itself offer cost, reliability and efficiency benefits.
[edit] MHD generator
A magnetohydrodynamic generator directly extracts electric power from moving hot gases through a magnetic field, without the use of rotating electromagnetic machinery. MHD generators were originally developed because the output of a plasma MHD generator is a flame, well able to heat the boilers of a steam power plant. The first practical design was the AVCO Mk. 25, developed in 1965. The U.S. government performed substantial development, culminating in a 25Mw demonstration plant in 1987. MHD generators operated as a topping cycle are currently (2007) less efficient than combined-cycle gas turbines.
[edit] Concepts
The generator moves an electric current, but does not create electric charge, which is already present in the conductive wire of its windings. It is somewhat analogous to a water pump, which creates a flow of water but does not create the water inside. Other types of electrical generators exist, based on other electrical phenomena such as piezoelectricity, and magnetohydrodynamics. The construction of a dynamo is similar to that of an electric motor, and all common types of dynamos could work as motors.
[edit] Excitation
A generator that uses field coils instead of permanent magnets requires a current flow to be present in the field coils for the generator to be able to produce any power at all. If the field coils are not powered, the rotor can spin without the generator producing any usable electrical energy.
For older and very large power generating equipment, it has been traditionally necessary for a small separate exciter generator to be operated in conjunction with the main power generator. This is a small permanent-magnet generator which produces the constant current flow necessary for the larger generator to function.
Most modern generators with field coils feature a capability known as self-excitation where some of the power output from the rotor is diverted to power the field coils. Additionally the rotor or stator contains a small amount of magnetizable metal, which retains a very weak residual magnetism when the generator is turned off. The generator is turned on with no load connected, and the initial weak field creates a weak flow in the field coils, which in turn begins to slightly affect the rotor to begin to produce current that then further strengthens the field. This feedback loop continues to increase field voltage and output power until the generator reaches its full operating output level.
This initial self-excitation feedback process does not work if the generator is started connected to a load, as the load will quickly dissipate the slight power production of the initial field buildup process.
It is additionally possible for a self-exciting generator either turned off or started with a load connected to result in dissipation of the residual magnetic field, resulting in complete non-function of the generator. In the case of a 220v portable generator commonly used by consumers and construction contractors, this loss of the residual field can usually be remedied by shutting down the generator, disconnecting all loads, and connecting what are normally the high-voltage/amperage generator outputs to the terminals of a common 9-volt battery. This very small current flow from the battery (in comparison with normal generator output) is enough to restore the residual self-exciting magnetic field. Usually only a moment of current flow, just briefly touching across the battery terminals, is enough to restore the field.
[edit] Terminology
The parts of a dynamo or related equipment can be expressed in either mechanical terms or electrical terms. Although distinctly separate, these two sets of terminology are frequently used interchangeably or in combinations that include one mechanical term and one electrical term. This causes great confusion when working with compound machines such as a brushless alternator or when conversing with people who work on a machine that is configured differently than the machines that the speaker is used to.
Mechanical
• Rotor: The rotating part of an alternator, generator, dynamo or motor.
• Stator: The stationary part of an alternator, generator, dynamo or motor.
Electrical
• Armature: The power-producing component of an alternator, generator, dynamo or motor. The armature can be on either the rotor or the stator.
• Field: The magnetic field component of an alternator, generator, dynamo or motor. The magnetic field of the dynamo or alternator can be provided by either electromagnets or permanent magnets mounted on either the rotor or the stator.
[edit] Equivalent circuit
Equivalent circuit of generator and load.
G = generator
VG=generator open-circuit voltage
RG=generator internal resistance
VL=generator on-load voltage
RL=load resistance
The equivalent circuit of a generator and load is shown in the diagram to the right. To determine the generator's VG and RG parameters, follow this procedure: -
• Before starting the generator, measure the resistance across its terminals using an ohmmeter. This is its DC internal resistance RGDC.
• Start the generator. Before connecting the load RL, measure the voltage across the generator's terminals. This is the open-circuit voltage VG.
• Connect the load as shown in the diagram, and measure the voltage across it with the generator running. This is the on-load voltage VL.
• Measure the load resistance RL, if you don't already know it.
• Calculate the generator's AC internal resistance RGAC from the following formula:
Note 1: The AC internal resistance of the generator when running is generally slightly higher than its DC resistance when idle. The above procedure allows you to measure both values. For rough calculations, you can omit the measurement of RGAC and assume that RGAC and RGDC are equal.
Note 2: If the generator is an AC type (distinctly not a dynamo), use an AC voltmeter for the voltage measurements.
[edit] Maximum power
The maximum power theorem applies to generators as it does to any source of electrical energy. This theorem states that the maximum power can be obtained from the generator by making the resistance of the load equal to that of the generator. However, under this condition the power transfer efficiency is only 50%, which means that half the power generated is wasted as heat and Lorentz force or back emf inside the generator. For this reason, practical generators are not usually designed to operate at maximum power output, but at a lower power output where efficiency is greater.
[edit] Vehicle-mounted generators
Early motor vehicles tended to use DC generators with electromechanical regulators. These were not particularly reliable or efficient and have now been replaced by alternators with built-in rectifier circuits. These power the electrical systems on the vehicle and recharge the battery after starting. Rated output will typically be in the range 50-100 A at 12 V, depending on the designed electrical load within the vehicle - some cars now have electrically-powered steering assistance and air conditioning, which places a high load on the electrical system. Commercial vehicles are more likely to use 24 V to give sufficient power at the starter motor to turn over a large diesel engine without the requirement for unreasonably thick cabling. Vehicle alternators do not use permanent magnets and are typically only 50-60% efficient over a wide speed range. Motorcycle alternators often use permanent magnet stators made with rare earth magnets, since they can be made smaller and lighter than other types. See also hybrid vehicle.
Some of the smallest generators commonly found power bicycle lights. These tend to be 0.5 ampere, permanent-magnet alternators supplying 3-6 W at 6 V or 12 V. Being powered by the rider, efficiency is at a premium, so these may incorporate rare-earth magnets and are designed and manufactured with great precision. Nevertheless, the maximum efficiency is only around 60% for the best of these generators - 40% is more typical - due to the use of permanent magnets. A battery would be required in order to use a controllable electromagnetic field instead, and this is unacceptable due to its weight and bulk.
Sailing yachts may use a water or wind powered generator to trickle-charge the batteries. A small propeller, wind turbine or impeller is connected to a low-power alternator and rectifier to supply currents of up to 12 A at typical cruising speeds.
[edit] Engine-generator
Engine - generator for a radio station (Dubendorf museum of the military aviation). The generator worked only when sending the radio signal (the receiver could operate on the battery power)
Hand-driven electric generator for a radio station (Dubendorf museum of the military aviation)
An engine-generator is the combination of an electrical generator and an engine mounted together to form a single piece of equipment. This combination is also called an engine-generator set or a gen-set. In many contexts, the engine is taken for granted and the combined unit is simply called a generator.
In addition to the engine and generator, engine-generators generally include a fuel tank, an engine speed regulator and a generator voltage regulator. Many units are equipped with a battery and electric starter. Standby power generating units often include an automatic starting system and a transfer switch to disconnect the load from the utility power source and connect it to the generator.
Engine-generators are often used to supply electrical power in places where utility power is not available and in situations where power is needed only temporarily. Small generators are sometimes used to supply power tools at construction sites. Trailer-mounted generators supply power for temporary installations of lighting, sound ampliification systems, amusement rides etc.
Standby power generators are permanently installed and kept ready to supply power to critical loads during temporary interruptions of the utility power supply. Hospitals, communications service installations, sewage pumping stations and many other important facilities are equipped with standby power generators.
Small and medium generators are especially popular in third world countries to supplement grid power, which is often unreliable. Trailer-mounted generators can be towed to disaster areas where grid power has been temporarily disrupted.
The generator can also be driven by the human muscle power (for instance, in the field radio station equipment).
The generator voltage (volts), frequency (Hz) and power (watts) ratings are selected to suit the load that will be connected.
Engine-generators are available in a wide range of power ratings. These include small, hand-portable units that can supply several hundred watts of power, hand-cart mounted units, as pictured above, that can supply several thousand watts and stationary or trailer-mounted units that can supply over a million watts. The smaller units tend to use gasoline (petrol) as a fuel, and the larger ones have various fuel types, including diesel, natural gas and propane (liquid or gas).
There are only a few portable three-phase generator models available in the US. Most of the portable units available are single phase power only and most of the three-phase generators manufactured are large industrial type generators.
Portable engine-generators may require an external power conditioner to safely operate some types of electronic equipment.
[edit] Hand portable emergency generators
Hand-held direct current generators to supply electrcal energy to charge car batteries. They are called emergency vehicle generators and includes batteries, to store energy.
A preferred hand-held generator is one that has an inverter. They are the smallest, quietest, and most fuel-efficient generators. Small portable generators have a standard A.C. alternator and run at a faster R.P.M. to generate power. Inverter models can run at slower RPMs to generate the power that is necessary, thus reducing the noise of the engine and making it more fuel-efficient. Inverter generators are best to power sensitive electronic devices such as computers and lights that use a ballast. The power output of a true sine wave inverter is more stable and is equal to or better than household electrical power. Regular generators that do not have AVR (Automatic Voltage Regulation) or which use low cost non-sine or modified sine wave inverters can damage electronics such as computers and sound systems due to their varying voltage.
[edit] Mid-size stationary engine-generator
Side view of a large Perkins diesel generator, manufactured by F&G Wilson Engineering Ltd. This is a 100 kVA set.
The mid-size stationary engine-generator pictured here is a 100 kVA set which produces 415 V at around 110 A per phase. It is powered by a 6.7 litre turbocharged Perkins Phaser 1000 Series engine, and consumes approximately 27 litres of fuel an hour, on a 400 litre tank. Diesel engines in the UK run on red diesel and rotate at 1500 rpm. This produces power at a frequency of 50 Hz, which is the frequency used in the UK. In areas where the power frequency is 60 Hz (United States), generators rotate at 1800 rpm or another even multiple of 60. Diesel engine-generator sets operated at their peak efficiency point can produce between 3 and 4 kilowatthours of electrical energy for each litre of diesel fuel consumed, with lower efficiency at part load.
Power factor
From Wikipedia, the free encyclopedia
• Interested in contributing to Wikipedia? •
Jump to: navigation, search
The power factor of an AC electric power system is defined as the ratio of the real power to the apparent power, and is a number between 0 and 1. Real power is the capacity of the circuit for performing work in a particular time. Apparent power is the product of the current and voltage of the circuit. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the apparent power can be greater than the real power. Low-power-factor loads increase losses in a power distribution system and result in increased energy costs.
Contents
[hide]
• 1 Power factor in linear circuits
• 2 Definition and calculation
• 3 Non-sinusoidal components
• 4 Mnemonics
• 5 See also
[edit] Power factor in linear circuits
Instantaneous and average power calculated from AC voltage and current with a unity power factor (φ=0, cosφ=1)
Instantaneous and average power calculated from AC voltage and current with a zero power factor (φ=90, cosφ=0)
Instantaneous and average power calculated from AC voltage and current with a lagging power factor (φ=45, cosφ=0.71)
In a purely resistive AC circuit, voltage and current waveforms are in step (or in phase), changing polarity at the same instant in each cycle. Where reactive loads are present, such as with capacitors or inductors, energy storage in the loads result in a time difference between the current and voltage waveforms. This stored energy returns to the source and is not available to do work at the load. A circuit with a low power factor will have thus higher currents to transfer a given quantity of real power than a circuit with a high power factor.
Circuits containing purely resistive heating elements (filament lamps, strip heaters, cooking stoves, etc.) have a power factor of 1.0. Circuits containing inductive or capacitive elements ( lamp ballasts, motors, etc.) often have a power factor below 1.0. For example, in electric lighting circuits, normal power factor ballasts (NPF) typically have a value of (0.4) - (0.6). Ballasts with a power factor greater than (0.9) are considered high power factor ballasts (HPF).
The significance of power factor lies in the fact that utility companies supply customers with volt-amperes, but bill them for watts. Power factors below 1.0 require a utility to generate more than the minimum volt-amperes necessary to supply the real power (watts). This increases generation and transmission costs. For example, if the load power factor were as low as 0.7, the apparent power would be 1.4 times the real power used by the load. Line current in the circuit would also be 1.4 times the current required at 1.0 power factor, so the losses in the circuit would be doubled (since they are proportional to the square of the current). Alternatively all components of the system such as generators, conductors, transformers, and switchgear would be increased in size (and cost) to carry the extra current.
Good power factor is considered to be greater than 90 to 95%. Utilities typically charge additional costs to customers who have a power factor below some limit, which is typically 90 to 95%. Engineers are often interested in the power factor of a load as one of the factors that affect the efficiency of power transmission.
[edit] Definition and calculation
AC power flow has the three components: real power (P), measured in watts (W); apparent power (S), measured in volt-amperes (VA); and reactive power (Q), measured in reactive volt-amperes (VAr).
The power factor is defined as:
.
In the case of a perfectly sinusoidal waveform, P, Q and S can be expressed as vectors that form a vector triangle such that:
If is the phase angle between the current and voltage, then the power factor is equal to , and:
Since the units are consistent, the power factor is by definition a dimensionless number between 0 and 1. When power factor is equal to 0, the energy flow is entirely reactive, and stored energy in the load returns to the source on each cycle. When the power factor is 1, all the energy supplied by the source is consumed by the load. Power factors are usually stated as "leading" or "lagging" to show the sign of the phase angle, where leading indicates a negative sign.
If a purely resistive load is connected to a power supply, current and voltage will change polarity in step, the power factor will be unity (1), and the electrical energy flows in a single direction across the network in each cycle. Inductive loads such as transformers and motors (any type of wound coil) consumes reactive power with current waveform lagging the voltage. Capacitive loads such as capacitor banks or buried cable generate reactive power with current phase leading the voltage. Both types of loads will absorb energy during part of the AC cycle, which is stored in the device's magnetic or electric field, only to return this energy back to the source during the rest of the cycle.
For example, to get 1 kW of real power if the power factor is unity, 1 kVA of apparent power needs to be transferred (1 kW ÷ 1 = 1 kVA). At low values of power factor, more apparent power needs to be transferred to get the same real power. To get 1 kW of real power at 0.2 power factor 5 kVA of apparent power needs to be transferred (1 kW ÷ 0.2 = 5 kVA).
It is often possible to adjust the power factor of a system to very near unity. This practice is known as power factor correction and is achieved by switching in or out banks of inductors or capacitors. For example the inductive effect of motor loads may be offset by locally connected capacitors.
[edit] Non-sinusoidal components
In circuits having only sinusoidal currents and voltages, the power factor effect arises only from the difference in phase between the current and voltage. This is narrowly known as "displacement power factor". The concept can be generalized to a total, distortion, or true power factor where the apparent power includes all harmonic components. This is of importance in practical power systems which contain non-linear loads such as rectifiers, some forms of electric lighting, electric arc furnaces, welding equipment, switched-mode power supplies and other devices.
A particularly important example is the millions of personal computers that typically incorporate switched-mode power supplies (SMPS) with rated output power ranging from 250 W to 750 W. Historically, these very-low-cost power supplies incorporated a simple full-wave rectifier that conducted only when the mains instantaneous voltage exceeded the voltage on the input capacitors. This leads to very high ratios of peak-to-average input current, which also lead to a low distortion power factor and potentially serious phase and neutral loading concerns.
Regulatory agencies such as the EU have set harmonic limits as a method of improving power factor. Declining component cost has hastened acceptance and implementation of two different methods. Normally, this is done by either adding a series inductor (so-called passive PFC) or the addition of a boost converter that forces a sinusoidal input (so-called active PFC). For example, SMPS with passive PFC can achieve power factor of about 0.7–0.75, SMPS with active PFC, up to 0.99, while SMPS without any power factor correction has a power factor of only about 0.55–0.65.
To comply with current EU standard EN61000-3-2, all switched-mode power supplies with output power more than 75 W must include passive PFC, at least.
A typical multimeter will give incorrect results when attempting to measure the AC current drawn by a non-sinusoidal load and then calculate the power factor. A true RMS multimeter must be used to measure the actual RMS currents and voltages (and therefore apparent power). To measure the real power or reactive power, a wattmeter designed to properly work with non-sinusoidal currents must be used.
[edit] Mnemonics
English-language power engineering students are advised to remember: "ELI the ICE man" or "ELI on ICE" – the voltage E leads the current I in an inductor L, the current leads the voltage in a capacitor C.
Or even shorter: CIVIL – in a Capacitor the I (current) leads Voltage, Voltage leads I (current) in an inductor L.
Polyphase system
From Wikipedia, the free encyclopedia
• Learn more about using Wikipedia for research •
Jump to: navigation, search
This article may require cleanup to meet Wikipedia's quality standards.
Please improve this article if you can.(May 2007)
A polyphase system is a means of distributing alternating current electrical power. The most common example is the three-phase power system used for most industrial applications.
Contents
[hide]
• 1 Phases
• 2 Motors
• 3 Higher phase order
• 4 Single phase loads on a polyphase system
• 5 See also
• 6 Further reading
[edit] Phases
Main articles: Phase and Phase shifting
Polyphase systems have two or more energized electrical conductors carrying alternating currents with a definite time offset between the peak amplitudes of the wave in each conductor. In modern utility power generation and distribution three phases are used, with the phases separated in time by one third of an AC cycle.
One voltage cycle of a three-phase system.
A polyphase system must provide a defined direction of phase rotation, so mirror image voltages do not count towards the phase order. A 3-wire system with two phase conductors 180 degrees apart is still only single phase. Such systems are sometimes described as split phase.
In the very early days of commercial electric power, some installations used true two phase four-wire systems for motors. The chief advantage of these was that the winding configuration was the same as for a single-phase capacitor-start motor, and, by using a four-wire system, conceptually the phases were independent and easy to analyze with mathematical tools available at the time. Two-phase systems have been replaced with three-phase systems. A two-phase supply with 90 degrees between phases can be derived from a three-phase system using a Scott-connected transformer.
[edit] Motors
Polyphase power is particularly useful in AC motors, such as the induction motor, where it generates a rotating magnetic field. When a three-phase supply completes one full cycle, the magnetic field of a two-pole motor has rotated through 360° in physical space; motors with more pairs of poles require more power supply cycles to complete one physical revolution of the magnetic field, and so these motors run more slowly. Nikola Tesla and Michail Dolivo-Dobrovolsky invented the first practical induction motors using a rotating magnetic field - previously all commercial motors were DC, with expensive commutators, high-maintenance brushes, and characteristics unsuitable for operation on an alternating current network. Polyphase motors are simple to construct, and are self-starting.
[edit] Higher phase order
Higher phase numbers than 3 have been used. A common practice for rectifier installations and in HVDC converters is to provide six phases, with 60 degree phase spacing, to reduce harmonic generation in the AC supply system and to provide smoother direct current. Experimental high-phase-order transmission lines have been built with up to 12 phases. These allow application of Extra High Voltage (EHV) -style design rules at lower voltages, and would permit increased power transfer in the same transmission line corridor width.
[edit] Single phase loads on a polyphase system
Residences and small businesses are usually supplied with a single phase taken from one of the three utility phases. Individual customers are distributed among the three phases to balance the loads.
Many larger apartment buildings are fed with 3-phase transformers. The phase offset between any two live (hot) wires is 120 degrees; the voltage between any two live wires is always times between a live and neutral wire.
Here is a comparison of voltage supplies in one-phase and three-phase systems in most of the world:
Voltage between: USA and Canada
Asia, South America
Europe & UK Australia
live and neutral wires 120V 220V 230V 240V
two live wires 208V 380V 400V 415V
In USA and Canada some appliances rated for 240V will run satisfactorily on 208V, although heating equipment will only output 75% of its 240 V rating. Special autotransformers can boost 208V to 240V if necessary.
Relay
From Wikipedia, the free encyclopedia
• Ten things you may not know about Wikipedia •
Jump to: navigation, search
This article is about the electrical component. For other uses, see Relay (disambiguation).
Automotive style miniature relay
A relay is an electrical switch that opens and closes under the control of another electrical circuit. In the original form, the switch is operated by an electromagnet to open or close one or many sets of contacts. It was invented by Joseph Henry in 1835. Because a relay is able to control an output circuit of higher power than the input circuit, it can be considered, in a broad sense, to be a form of an electrical amplifier.
Contents
[hide]
• 1 Operation
• 2 Types of relay
o 2.1 Latching relay
o 2.2 Reed relay
2.2.1 Mercury-wetted relay
o 2.3 Polarized relay
o 2.4 Machine tool relay
o 2.5 Contactor relay
o 2.6 Solid state contactor relay
o 2.7 Buchholz relay
o 2.8 Forced-guided contacts relay
o 2.9 Solid-state relay
o 2.10 Overload protection relay
• 3 Pole & Throw
• 4 Applications
• 5 Relay application considerations
• 6 Protective relay
• 7 Overcurrent relay
• 8 See also
• 9 References
• 10 External links
[edit] Operation
When a current flows through the coil, the resulting magnetic field attracts an armature that is mechanically linked to a moving contact. The movement either makes or breaks a connection with a fixed contact. When the current to the coil is switched off, the armature is returned by a force approximately half as strong as the magnetic force to its relaxed position. Usually this is a spring, but gravity is also used commonly in industrial motor starters. Most relays are manufactured to operate quickly. In a low voltage application, this is to reduce noise. In a high voltage or high current application, this is to reduce arcing.
If the coil is energized with DC, a diode is frequently installed across the coil, to dissipate the energy from the collapsing magnetic field at deactivation, which would otherwise generate a spike of voltage and might cause damage to circuit components. Some automotive relays already include that diode inside the relay case. Alternatively a contact protection network, consisting of a capacitor and resistor in series, may absorb the surge. If the coil is designed to be energized with AC, a small copper ring can be crimped to the end of the solenoid. This "shading ring" creates a small out-of-phase current, which increases the minimum pull on the armature during the AC cycle.[1]
By analogy with the functions of the original electromagnetic device, a solid-state relay is made with a thyristor or other solid-state switching device. To achieve electrical isolation an optocoupler can be used which is a light-emitting diode (LED) coupled with a photo transistor.
[edit] Types of relay
Small relay as used in electronics
[edit] Latching relay
A latching relay has two relaxed states (bistable). These are also called 'keep' relays. When the current is switched off, the relay remains in its last state. This is achieved with a solenoid operating a ratchet and cam mechanism, or by having two opposing coils with an over-center spring or permanent magnet to hold the armature and contacts in position while the coil is relaxed, or with a remnant core. In the ratchet and cam example, the first pulse to the coil turns the relay on and the second pulse turns it off. In the two coil example, a pulse to one coil turns the relay on and a pulse to the opposite coil turns the relay off. This type of relay has the advantage that it consumes power only for an instant, while it is being switched, and it retains its last setting across a power outage.
[edit] Reed relay
A reed relay has a set of contacts inside a vacuum or inert gas filled glass tube, which protects the contacts against atmospheric corrosion. The contacts are closed by a magnetic field generated when current passes through a coil around the glass tube. Reed relays are capable of faster switching speeds than conventional relays. See also reed switch.
[edit] Mercury-wetted relay
A mercury-wetted reed relay is a form of reed relay in which the contacts are wetted with mercury. Such relays are used to switch low-voltage signals (one volt or less) because of its low contact resistance, or for high-speed counting and timing applications where the mercury eliminates contact bounce. Mercury wetted relays are position-sensitive and must be mounted vertically to work properly. Because of the toxicity and expense of liquid mercury, these relays are rarely specified for new equipment. See also mercury switch.
[edit] Polarized relay
A Polarized Relay placed the armature between the poles of a permanent magnet to increase sensitivity. Polarized relays were used in middle 20th Century telephone exchanges to detect faint pulses and correct telegraphic distortion. The poles were on screws, so a technician could first adjust them for maximum sensitivity and then apply a bias spring to set the critical current that would operate the relay.
[edit] Machine tool relay
A machine tool relay is a type standardized for industrial control of machine tools, transfer machines, and other sequential control. They are characterized by a large number of contacts (sometimes extendable in the field) which are easily converted from normally-open to normally-closed status, easily replaceable coils, and a form factor that allows compactly installing many relays in a control panel. Although such relays once were the backbone of automation in such industries as automobile assembly, the programmable logic controller mostly displaced the machine tool relay from sequential control applications.
[edit] Contactor relay
A contactor is a very heavy-duty relay used for switching electric motors and lighting loads. With high current, the contacts are made with pure silver. The unavoidable arcing causes the contacts to oxidize and silver oxide is still a good conductor. Such devices are often used for motor starters. A motor starter is a contactor with overload protection devices attached. The overload sensing devices are a form of heat operated relay where a coil heats a bi-metal strip, or where a solder pot melts, releasing a spring to operate auxiliary contacts. These auxiliary contacts are in series with the coil. If the overload senses excess current in the load, the coil is de-energized. Contactor relays can be extremely loud to operate, making them unfit for use where noise is a chief concern.
[edit] Solid state contactor relay
25 amp or 40 amp solid state contactors
A solid state contactor is a very heavy-duty solid state relay, including the necessary heat sink, used for switching electric heaters, small electric motors and lighting loads; where frequent on/off cycles are required. There are no moving parts to wear out and there is no contact bounce due to vibration. They are activated by AC control signals or DC control signals from Programmable logic controller (PLCs), PCs, Transistor-transistor logic (TTL) sources, or other microprocessor controls.
[edit] Buchholz relay
A Buchholz relay is a safety device sensing the accumulation of gas in large oil-filled transformers, which will alarm on slow accumulation of gas or shut down the transformer if gas is produced rapidly in the transformer oil.
[edit] Forced-guided contacts relay
A forced-guided contacts relay has relay contacts that are mechanically linked together, so that when the relay coil is energized or de-energized, all of the linked contacts move together. If one set of contacts in the relay becomes immobilized, no other contact of the same relay will be able to move. The function of forced-guided contacts is to enable the safety circuit to check the status of the relay. Forced-guided contacts are also known as "positive-guided contacts", "captive contacts", "locked contacts", or "safety relays".
A solid state relay, which has no moving parts
[edit] Solid-state relay
A solid state relay (SSR) is a solid state electronic component that provides a similar function to an electromechanical relay but does not have any moving components, increasing long-term reliability. With early SSR's, the tradeoff came from the fact that every transistor has a small voltage drop across it. This collective voltage drop limited the amount of current a given SSR could handle. As transistors improved, higher current SSR's, able to handle 100 to 1,200 amps, have become commercially available. Compared to electromagnetic relays, they may be falsely triggered by transients.
[edit] Overload protection relay
One type of electric motor overload protection relay is operated by a heating element in series with the electric motor . The heat generated by the motor current operates a bi-metal strip or melts solder, releasing a spring to operate contacts. Where the overload relay is exposed to the same environment as the motor, a useful though crude compensation for motor ambient temperature is provided.
[edit] Pole & Throw
Circuit symbols of relays. "C" denotes the common terminal in SPDT and DPDT types.
Since relays are switches, the terminology applied to switches is also applied to relays. A relay will switch one or more poles, each of whose contacts can be thrown by energizing the coil in one of three ways:
• Normally-open (NO) contacts connect the circuit when the relay is activated; the circuit is disconnected when the relay is inactive. It is also called a Form A contact or "make" contact.
• Normally-closed (NC) contacts disconnect the circuit when the relay is activated; the circuit is connected when the relay is inactive. It is also called a Form B contact or "break" contact.
• Change-over, or double-throw, contacts control two circuits: one normally-open contact and one normally-closed contact with a common terminal. It is also called a Form C contact or "transfer" contact. If this type of contact utilizes a "make before break" functionality, then it is called a Form D contact.
The following types of relays are commonly encountered:
• SPST - Single Pole Single Throw. These have two terminals which can be connected or disconnected. Including two for the coil, such a relay has four terminals in total. It is ambiguous whether the pole is normally open or normally closed. The terminology "SPNO" and "SPNC" is sometimes used to resolve the ambiguity.
• SPDT - Single Pole Double Throw. A common terminal connects to either of two others. Including two for the coil, such a relay has five terminals in total.
• DPST - Double Pole Single Throw. These have two pairs of terminals. Equivalent to two SPST switches or relays actuated by a single coil. Including two for the coil, such a relay has six terminals in total. It is ambiguous whether the poles are normally open, normally closed, or one of each.
The diagram on the package of a DPDT AC coil relay
• DPDT - Double Pole Double Throw. These have two rows of change-over terminals. Equivalent to two SPDT switches or relays actuated by a single coil. Such a relay has eight terminals, including the coil.
• QPDT - Quadruple Pole Double Throw. Often referred to as Quad Pole Double Throw, or 4PDT. These have four rows of change-over terminals. Equivalent to four SPDT switches or relays actuated by a single coil, or two DPDT relays. In total, fourteen terminals including the coil.
[edit] Applications
Relays are used:
• to control a high-voltage circuit with a low-voltage signal, as in some types of modems,
• to control a high-current circuit with a low-current signal, as in the starter solenoid of an automobile,
• to detect and isolate faults on transmission and distribution lines by opening and closing circuit breakers (protection relays),
A DPDT AC coil relay with "ice cube" packaging
• to isolate the controlling circuit from the controlled circuit when the two are at different potentials, for example when controlling a mains-powered device from a low-voltage switch. The latter is often applied to control office lighting as the low voltage wires are easily installed in partitions, which may be often moved as needs change. They may also be controlled by room occupancy detectors in an effort to conserve energy,
• to perform logic functions. For example, the boolean AND function is realised by connecting NO relay contacts in series, the OR function by connecting NO contacts in parallel. The change-over or Form C contacts perform the XOR (exclusive or) function. Similar functions for NAND and NOR are accomplished using NC contacts. The Ladder programming language is often used for designing relay logic networks.
o Early computing. Before vacuum tubes and transistors, relays were used as logical elements in digital computers. See ARRA (computer), Harvard Mark II, Zuse Z2, and Zuse Z3.
o Safety-critical logic. Because relays are much more resistant than semiconductors to nuclear radiation, they are widely used in safety-critical logic, such as the control panels of radioactive waste-handling machinery.
• to perform time delay functions. Relays can be modified to delay opening or delay closing a set of contacts. A very short (a fraction of a second) delay would use a copper disk between the armature and moving blade assembly. Current flowing in the disk maintains magnetic field for a short time, lengthening release time. For a slightly longer (up to a minute) delay, a dashpot is used. A dashpot is a piston filled with fluid that is allowed to escape slowly. The time period can be varied by increasing or decreasing the flow rate. For longer time periods, a mechanical clockwork timer is installed.
[edit] Relay application considerations
A large relay with two coils and many sets of contacts, used in an old telephone switching system.
Selection of an appropriate relay for a particular application requires evaluation of many different factors:
• Number and type of contacts - normally open, normally closed, changeover (double-throw)
• In the case of changeover, there are two types. This style of relay can be manufactured two different ways. "Make before Break" and "Break before Make". The old style telephone switch required Make-before-break so that the connection didn't get dropped while dialing the number. The railroad still uses them to control railroad crossings.
• Rating of contacts - small relays switch a few amperes, large contactors are rated for up to 3000 amperes, alternating or direct current
• Voltage rating of contacts - typical control relays rated 300 VAC or 600 VAC, automotive types to 50 VDC, special high-voltage relays to about 15,000 V
• Coil voltage - machine-tool relays usually 24 VAC or 120 VAC, relays for switchgear may have 125 V or 250 VDC coils, "sensitive" relays operate on a few milliamperes
• Package/enclosure - open, touch-safe, double-voltage for isolation between circuits, explosion proof, outdoor, oil-splashresistant
• Mounting - sockets, plug board, rail mount, panel mount, through-panel mount, enclosure for mounting on walls or equipment
• Switching time - where high speed is required
• "Dry" contacts - when switching very low level signals, special contact materials may be needed such as gold-plated contacts
• Contact protection - suppress arcing in very inductive circuits
• Coil protection - suppress the surge voltage produced when switching the coil current
• Isolation between coil circuit and contacts
• Aerospace or radiation-resistant testing, special quality assurance
• Expected mechanical loads due to acceleration - some relays used in aerospace applications are designed to function in shock loads of 50 g or more
• Accessories such as timers, auxiliary contacts, pilot lamps, test buttons
• Regulatory approvals
• Stray magnetic linkage between coils of adjacent relays on a printed circuit board.
[edit] Protective relay
A protective relay is a complex electromechanical apparatus, often with more than one coil, designed to calculate operating conditions on an electrical circuit and trip circuit breakers when a fault was found. Unlike switching type relays with fixed and usually ill-defined operating voltage thresholds and operating times, protective relays had well-established, selectable, time/current (or other operating parameter) curves. Such relays were very elaborate, using arrays of induction disks, shaded-pole magnets, operating and restraint coils, solenoid-type operators, telephone-relay style contacts, and phase-shifting networks to allow the relay to respond to such conditions as over-current, over-voltage, reverse power flow, over- and under- frequency, and even distance relays that would trip for faults up to a certain distance away from a substation but not beyond that point. An important transmission line or generator unit would have had cubicles dedicated to protection, with a score of individual electromechanical devices. The various protective functions available on a given relay are denoted by standard ANSI Device Numbers. For example, a relay including function 51 would be a timed overcurrent protective relay.
These protective relays provide various types of electrical protection by detecting abnormal conditions and isolating them from the rest of the electrical system by circuit breaker operation. Such relays may be located at the service entrance or at major load centers.
Design and theory of these protective devices is an important part of the education of an electrical engineer who specializes in power systems. Today these devices are nearly entirely replaced (in new designs) with microprocessor-based instruments (numerical relays) that emulate their electromechanical ancestors with great precision and convenience in application. By combining several functions in one case, numerical relays also save capital cost and maintenance cost over electromechanical relays. However, due to their very long life span, tens of thousands of these "silent sentinels" are still protecting transmission lines and electrical apparatus all over the world.
Top, middle: reed switches, bottom: reed relay
[edit] Overcurrent relay
An "Overcurrent Relay" is a type of protective relay. The ANSI Device Designation Number is 50 for an Instantaneous OverCurrent (IOC), 51 for a Time OverCurrent (TOC). In a typical application the overcurrent relay is used for overcurrent protection, connected to a current transformer and calibrated to operate at or above a specific current level. When the relay operates, one or more contacts will operate and energize a trip coil in a Circuit Breaker and trip (open) the Circuit Breaker.
Operational amplifier
From Wikipedia, the free encyclopedia
• Find out more about navigating Wikipedia and finding information •
Jump to: navigation, search
Op-amp ICs (some single, some dual) in 8-pin dual in-line packages ("DIPs")
An operational amplifier, usually referred to as an op-amp for brevity, is a DC-coupled high-gain electronic voltage amplifier with Differential Inputs and, usually, a single output. In its ordinary usage, the output of the op-amp is controlled by negative feedback which, because of the amplifier's high gain, almost completely determines the output voltage for any given input.
Op-amps are among the most widely used electronic devices today, being used in a vast array of consumer, industrial, and scientific devices. General-purpose integrated op-amps of standard specification sell for well under one U.S. dollar. Modern designs are electronically more rugged than earlier implementations and some can sustain direct short-circuits on their outputs without damage.
Contents
[hide]
• 1 History
o 1.1 Basic operation
• 2 The ideal op-amp
• 3 Limitations of real op-amps
o 3.1 DC imperfections
o 3.2 AC imperfections
o 3.3 Nonlinear imperfections
o 3.4 Power considerations
• 4 Notation
• 5 Use in electronics system design
• 6 DC behavior
• 7 AC behavior
• 8 Basic non-inverting amplifier circuit
• 9 Internal circuitry of 741 type op-amp
o 9.1 Current mirrors
o 9.2 Differential input stage
o 9.3 Class A gain stage
o 9.4 Output bias circuitry
o 9.5 Output stage
• 10 Notes
• 11 Common applications
• 12 Other applications
• 13 See also
• 14 External links
[edit] History
A 741 operational amplifier in a TO-5 metal can package
The operational amplifier was originally designed to perform mathematical operations by using voltage as an analogue of another quantity. This is the basis of the analog computer, where op-amps were used to model the basic mathematical operations (addition, subtraction, integration, differentiation, and so on). However, an ideal operational amplifier is an extremely versatile circuit element, with a great many applications beyond mathematical operations. Practical op-amps, based on transistors, tubes, or other amplifying components and implemented as discrete or integrated circuits, are good approximations to ideal devices.
While op-amps were originally developed in the vacuum tube era they are now normally implemented as integrated circuits (ICs), though versions with discrete components are used when performance beyond that attainable with ICs is required.
The first integrated op-amp to become widely available, in the late 1960s, was the bipolar Fairchild μA709, created by Bob Widlar in 1965; it was rapidly superseded by the 741, which has better performance, stability, and is easier to use. The μA741 is still in production, and has become ubiquitous in electronics — many manufacturers produce a version of this classic chip, recognizable by part numbers containing "741." Better designs have since been introduced, some based on the FET (late 1970s) and MOSFET (early 1980s). Many of these more modern devices can be substituted into an older 741-based circuit and work with no other changes, to give better performance.
Op-amps usually have parameters within tightly specified limits, with standardized packaging and power supply requirements. Op-amps have many uses within electronics; with only a handful of external components they can be made to perform a wide variety of analog signal processing tasks. Many standard IC op-amps cost only a few cents in moderate production volume, but integrated or discrete amplifiers with non-standard specifications may cost over $100 US in small quantities.
[edit] Basic operation
The amplifier's differential inputs consist of an inverting input and a non-inverting input and ideally the op-amp amplifies only the difference in voltage between the two. This is called the "differential input voltage." In its most common use, the op-amp's output voltage is controlled by feeding a fraction of the output signal back to the inverting input. This is known as negative feedback. If that fraction is zero, i.e., there is no negative feedback, the amplifier is said to be running "open loop" and its output is the differential input voltage multiplied by the total gain of the amplifier, as shown by the following equation:
Because the open-loop gain is typically very large, op-amps are not usually used without negative feedback. Unless the differential input voltage is extremely small, open-loop operation results in op-amp saturation (see below in Nonlinear imperfections). An example of how the output voltage is calculated when negative feedback exists is shown below in Basic non-inverting amplifier circuit.
Another typical configuration of op-amps is the positive feedback, which takes a fraction of the output signal back to the non-inverting input. An important application of it is the comparator with hysteresis.
[edit] The ideal op-amp
For any input voltages the ideal op-amp has infinite open-loop gain, infinite bandwidth, infinite input impedances resulting in zero input currents, zero offset voltage, infinite slew rate, zero output impedance and zero noise. Thus the inputs of an op-amp can be modelled using a nullator and the output with a norator.
Real op-amps can only approach this ideal, and the actual parameters are subject to drift over time and with changes in temperature, input conditions, etc. Modern integrated FET or MOSFET op-amps approximate more closely these ideals than bipolar ICs where large signals must be handled at room temperature over a limited bandwidth; input impedance, in particular, is much higher, although the bipolar op-amps usually exhibit superior (i.e., lower) input offset drift and noise characteristics.
Where the limitations of real devices can be ignored, an op-amp can be viewed as a black box with gain; circuit function and parameters are determined by feedback, usually negative. IC op-amps as implemented in practice are moderately complex integrated circuits; see the internal circuitry for the relatively simple 741 op-amp below, for example.
Equations and sample op-amp circuits are here: Operational amplifier applications
[edit] Limitations of real op-amps
[edit] DC imperfections
• Finite gain — the effect is most pronounced when the overall design attempts to achieve gain close to the inherent gain of the op-amp.
• Finite input resistance — this puts an upper bound on the resistances in the feedback circuit. Some op-amps have circuitry to protect inputs from excessive voltage: this makes input parameters slightly worse. Some op-amps are available in protected (thus slightly degraded) and unprotected versions.
• Nonzero output resistance — important for low resistance loads. Except for very small voltage output, power considerations usually come into play first. (Output impedance is inversely proportional to the idle current in the output stage — very low idle current results in very high output impedance.)
• Input bias current — a small amount of current (typically ~10 nA for bipolar op-amps, or picoamperes for CMOS designs) flows into the inputs. This current is mismatched slightly between the inverting and non-inverting inputs (there is an input offset current). This effect is usually important only for very low power circuits.
• Input offset voltage — the voltage required across the op-amp's input terminals to drive the output voltage to zero.[1] In the perfect amplifier, there would be no input offset voltage. However, it exists in actual op-amps because of imperfections in the differential amplifier that constitutes the input stage of the vast majority of these devices. Input offset voltage creates two problems: First, due to the amplifier's high voltage gain, it virtually assures that the amplifier output will go into saturation if it is operated without negative feedback, even when the input terminals are wired together. Second, in a closed loop, negative feedback configuration the input offset voltage is amplified along with the signal and this may pose a problem if high precision DC amplification is required or if the input signal is very small.[2]
• Common mode gain — A perfect operational amplifier amplifies only the voltage difference between its two inputs, completely rejecting all voltages that are common to both. However, the differential input stage of an operational amplifier is never perfect, leading to the amplification of these identical voltages to some degree. The standard measure of this defect is called the common-mode rejection ratio (denoted, CMRR). Minimization of common mode gain is usually important in non-inverting amplifiers (described below) that operate at high amplification.
• Temperature effects — all parameters change with temperature. Temperature drift of the input offset voltage is especially important.
[edit] AC imperfections
• Finite bandwidth — all amplifiers have a finite bandwidth. This creates several problems for op amps. First, associated with the bandwidth limitation is a phase difference between the input signal and the amplifier output that can lead to oscillation in some feedback circuits. The internal frequency compensation used in some op amps to increase the phase margin intentionally reduces the bandwidth even further to maintain output stability when using a wide variety of feedback networks. Second, reduced bandwidth results in lower amounts of feedback at higher frequencies, producing higher distortion, noise, and output impedance and also reduced output phase linearity as the frequency increases.
• Input capacitance — most important for high frequency operation because it further reduces the open loop bandwidth of the amplifier.
• Common mode gain — See DC imperfections, above.
[edit] Nonlinear imperfections
• Saturation — output voltage is limited to a minimum and maximum value close to the power supply voltages.[3] Saturation occurs when the output of the amplifier reaches this value and is usually due to:
o In the case of an op-amp using a bipolar power supply, a voltage gain that produces an output that is more positive or more negative than that maximum or minimum; or
o In the case of an op-amp using a single supply voltage, either a voltage gain that produces an output that is more positive than that maximum, or a signal so close to ground that the amplifier's gain is not sufficient to raise it above the lower threshold.[4]
• Slewing — the amplifier's output voltage reaches its maximum rate of change. Measured as the slew rate, it is usually specified in volts per microsecond. When slewing occurs, further increases in the input signal have no effect on the rate of change of the output. Slewing is usually caused by internal capacitances in the amplifier, especially those used to implement its frequency compensation.
• Non-linear transfer function — The output voltage may not be accurately proportional to the difference between the input voltages. It is commonly called distortion when the input signal is a waveform. This effect will be very small in a practical circuit if substantial negative feedback is used.
[edit] Power considerations
• Limited output current — the output current must obviously be finite. In practice, most op-amps are designed to limit the output current so as not to exceed a specified level — around 25 mA for a type 741 IC op-amp — thus protecting the op-amp and associated circuitry from damage.
• Limited dissipated power — an opamp is a linear amplifier. It therefore dissipates some power as heat, proportional to the output current, and to the difference between the output voltage and the supply voltage. If the opamp dissipates too much power, then its temperature will increase above some safe limit. The opamp may enter thermal shutdown, or it may be destroyed.
[edit] Notation
The usual circuit symbol for an op-amp is:
where:
• V+: non-inverting input
• V−: inverting input
• Vout: output
• VS+: positive power supply (sometimes also VDD, VCC, or VCC + )
• VS−: negative power supply (sometimes also VSS, VEE, or VCC − )
The power supply pins (VS+ and VS−) can be labeled in different ways (See IC power supply pins). Despite different labeling, the function remains the same. Often these pins are left out of the diagram for clarity, and the power configuration is described or assumed from the circuit. The positions of the inverting and non-inverting inputs may be reversed in diagrams where appropriate; the power supply pins are not commonly reversed (but are sometimes).
[edit] Use in electronics system design
The use of op-amps as circuit blocks is much easier and clearer than specifying all their individual circuit elements (transistors, resistors, etc.), whether the amplifiers used are integrated or discrete. In the first approximation op-amps can be used as if they were ideal differential gain blocks; at a later stage limits can be placed on the acceptable range of parameters for each op-amp.
Circuit design follows the same lines for all electronic circuits. A specification is drawn up governing what the circuit is required to do, with allowable limits. For example, the gain may be required to be 100 times, with a tolerance of 5% but drift of less than 1% in a specified temperature range; the input impedance not less than 1 megohm; etc.
A basic circuit is designed, often with the help of circuit modeling (on a computer). Specific commercially available op-amps and other components are then chosen that meet the design criteria within the specified tolerances at acceptable cost. If not all criteria can be met, the specification may need to be modified.
A prototype is then built and tested; changes to meet or improve the specification, alter functionality, or reduce the cost, may be made.
[edit] DC behavior
Open-loop gain is defined as the amplification from input to output without any feedback applied. For most practical calculations, the open-loop gain is assumed to be infinite; in reality it is obviously not. Typical devices exhibit open-loop DC gain ranging from 100,000 to over 1 million; this is sufficiently large for circuit gain to be determined almost entirely by the amount of negative feedback used. Op-amps have performance limits that the designer must keep in mind and sometimes work around. In particular, instability is possible in a DC amplifier if AC aspects are neglected.
[edit] AC behavior
The op-amp gain calculated at DC does not apply at higher frequencies. To a first approximation, the gain of a typical op-amp is inversely proportional to frequency. This means that an op-amp is characterized by its gain-bandwidth product. For example, an op-amp with a gain bandwidth product of 1 MHz would have a gain of 5 at 200 kHz, and a gain of 1 at 1 MHz. This low-pass characteristic is introduced deliberately, because it tends to stabilize the circuit by introducing a dominant pole. This is known as frequency compensation.
Typical low cost, general purpose op-amps exhibit a gain bandwidth product of a few megahertz. Specialty and high speed op-amps can achieve gain bandwidth products of hundreds of megahertz. For very high-frequency circuits, a completely different form of op-amp called the current-feedback operational amplifier is often used.
[edit] Basic non-inverting amplifier circuit
The general op-amp has two inputs and one output. The output voltage is a multiple of the difference between the two inputs (some are made with floating, differential outputs):
Vout = G(V+ − V−)
G is the open-loop gain of the op-amp. The inputs are assumed to have very high impedance; negligible current will flow into or out of the inputs. Op-amp outputs have very low source impedance.
If the output is connected to the inverting input, after being scaled by a voltage divider K = R1 / (R1 + R2), then:
V+ = Vin
V− = K Vout
Vout = G(Vin − K Vout)
Solving for Vout / Vin, we see that the result is a linear amplifier with gain:
Vout/Vin = G /(1 + G K)
If G is very large, Vout/Vin comes close to 1/K, which equals 1 + (R2/R1).
This negative feedback connection is the most typical use of an op-amp, but many different configurations are possible, making it one of the most versatile of all electronic building blocks.
When connected in a negative feedback configuration, the op-amp will try to make Vout whatever voltage is necessary to make the input voltages as nearly equal as possible. This, and the high input impedance, are sometimes called the two "golden rules" of op-amp design (for circuits that use feedback):
1. No current will flow into the inputs.
2. The input voltages will be nearly equal.
The exception is if the voltage required is greater than the op-amp's supply, in which case the output signal stops near the power supply rails, VS+ or VS−.
Most single, dual and quad op-amps available have a standardized pin-out which permits one type to be substituted for another without wiring changes. A specific op-amp may be chosen for its open loop gain, bandwidth, noise performance, input impedance, power consumption, or a compromise between any of these factors.
[edit] Internal circuitry of 741 type op-amp
LM741 pin assignment (Dual in-line package).
Though designs vary between products and manufacturers, all op-amps have basically the same internal structure, which consists of three stages:
1. Differential amplifier
o Input stage — provides low noise amplification, high input impedance, usually a differential output
2. Voltage amplifier
o Provides high voltage gain, a single-pole frequency roll-off, usually single-ended output
3. Output amplifier
o Output stage — provides high current driving capability, low output impedance, current limiting and short circuit protection circuitry
A component level diagram of the common 741 op-amp
[edit] Current mirrors
The sections outlined in red are current mirrors. The primary current, from which other standing (bias) currents are generated, is determined by the chip's power supply and the 39 kΩ resistor acting (with the two transistor diode junctions) as a current source. The current generated is approximately (VS+ − VS− − 2Vbe)/39 kΩ. The input stage DC conditions are controlled by the two current mirrors on the left. Q10 and Q11 form a Widlar current source where the 5 kΩ resistor sets the collector current of Q10 to a very small fraction of the primary current. The constant Q10 current supplies the base current for Q3 and Q4 but must also supply the Q9 collector current, which the Q8/Q9 current mirror will try to make as large as the Q3 and Q4 collector currents. Thus the Q3/Q4 base current (which is of the same order as the input currents) will be a small fraction of the already small Q10 current. Another way of looking at this is that if the input stage current tends to increase above the Q10 current, the Q8/Q9 current mirror will draw current away from the common base of Q3 and Q4, throttling the input stage, and vice versa. Thus the input stage DC conditions are stabilized by a high-gain negative feedback system. The feedback loop also isolates the rest of the circuit from common mode variations by making the base voltage of Q3/Q4 follow tightly 2Vbe below that of the highest input voltage.
The top-right current mirror Q12/Q13 provides a constant current load for the class A gain stage, via the collector of Q13, that is largely independent of the output voltage.
[edit] Differential input stage
The blue outlined section is a differential amplifier. Q1 and Q2 are input emitter followers and together with the common base pair Q3 and Q4 form the differential input stage. In addition, Q3 and Q4 also act as level shifters and provide voltage gain to drive the class A amplifier. They also help to increase the reverse Vbe rating on the input transistors.
The differential amplifier formed by Q1 - Q4 drives a current mirror active load formed by transistors Q5 - Q7. Q7 increases the accuracy of the current mirror by decreasing the amount of signal current required from Q3 to drive the bases of Q5 and Q6. This current mirror provides differential to single ended conversion as follows:
The signal current of Q3 is the input to the current mirror while the output of the mirror (the collector of Q6) is connected to the collector of Q4. Here, the signal currents of Q3 and Q4 are summed. For differential input signals, the signal currents of Q3 and Q4 are equal and opposite. Thus, the sum is twice the individual signal currents. This completes the differential to single ended conversion.
The open circuit signal voltage appearing at this point is given by the product of the summed signal currents and the paralleled collector resistances of Q4 and Q6. Since the collectors of Q4 and Q6 appear as high resistances to the signal current, the open circuit voltage gain of this stage is very high.
It should be noted that the base current at the inputs is not zero and the effective (differential) input impedance of a 741 is about 2 MΩ. The "offset null" pins may be used to place external resistors in parallel with the two 1 kΩ resistors (typically in the form of the two ends of a potentiometer) to adjust the balancing of the Q5/Q6 current mirror and thus indirectly control the output of the op-amp when zero signal is applied between the inputs.
[edit] Class A gain stage
The section outlined in magenta is the class A gain stage. It consists of two NPN transistors in a Darlington configuration and uses the output side of a current mirror as its collector load to achieve high gain. The 30 pF capacitor provides frequency selective negative feedback around the class A gain stage as a means of frequency compensation to stabilise the amplifier in feedback configurations. This technique is called Miller compensation and functions in a similar manner to an op-amp integrator circuit. It is also known as 'dominant pole compensation' because it introduces a dominant pole (one which masks the effects of other poles) into the open loop frequency response. This pole can be as low as 10 Hz in a 741 amplifier and it introduces a −3 dB loss into the open loop response at this frequency. This is done to achieve unconditional stability of the amplifier down to unity closed loop gain using non-reactive feedback networks and makes this type of internally compensated amplifier easier to use.
[edit] Output bias circuitry
The green outlined section (based around Q16) is a voltage level shifter or Vbe multiplier; a type of voltage source. In the circuit as shown, Q16 provides a constant voltage drop between its collector and emitter regardless of the current passing through the circuit. If the base current to the transistor is assumed to be zero, and the voltage between base and emitter (and across the 7.5 kΩ resistor) is 0.625 V (a typical value for a BJT in the active region), then the current flowing through the 4.5 kΩ resistor will be the same as that through the 7.5 kΩ, and will produce a voltage of 0.375 V across it. This keeps the voltage across the transistor, and the two resistors at 0.625 + 0.375 = 1 V. This serves to bias the two output transistors slightly into conduction reducing crossover distortion. In some discrete component amplifiers this function is achieved with (usually 2) silicon diodes.
[edit] Output stage
The output stage (outlined in cyan) is a Class AB push-pull emitter follower (Q14, Q20) amplifier with the bias set by the Vbe multiplier voltage source Q16 and its base resistors. This stage is effectively driven by the collectors of Q13 and Q19. The output range of the amplifier is about 1 volt less than the supply voltage, owing in part to Vbe of the output transistors Q14 and Q20.
The 25 Ω resistor in the output stage acts as a current sense to provide the output current limiting function which limits the current flow in the emitter follower Q14 to about 25 mA for the 741. Current limiting for the negative output is done by sensing the voltage across Q19's emitter resistor and using this to reduce the drive into Q15's base. Later versions of this amplifier schematic may show a slightly different method of output current limiting. The output resistance is not zero as it would be in an ideal op-amp but with negative feedback it approaches zero.
Note: while the 741 was historically used in audio and other sensitive equipment, such use is now rare because of the improved noise performance of more modern op-amps. Apart from generating noticeable hiss, 741s and other older op-amps may have poor common-mode rejection ratios and so will often introduce cable-borne mains hum and other common-mode interference, such as switch 'clicks', into sensitive equipment.
Tuesday, March 31, 2009
Subscribe to:
Post Comments (Atom)
Nice stuff dear. I like it load bank hire & generator maintenance
ReplyDelete